Python/project_euler/problem_035/sol1.py
pre-commit-ci[bot] bc8df6de31
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2)
- [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-13 07:52:41 +01:00

84 lines
2.2 KiB
Python

"""
Project Euler Problem 35
https://projecteuler.net/problem=35
Problem Statement:
The number 197 is called a circular prime because all rotations of the digits:
197, 971, and 719, are themselves prime.
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73,
79, and 97.
How many circular primes are there below one million?
To solve this problem in an efficient manner, we will first mark all the primes
below 1 million using the Sieve of Eratosthenes. Then, out of all these primes,
we will rule out the numbers which contain an even digit. After this we will
generate each circular combination of the number and check if all are prime.
"""
from __future__ import annotations
sieve = [True] * 1000001
i = 2
while i * i <= 1000000:
if sieve[i]:
for j in range(i * i, 1000001, i):
sieve[j] = False
i += 1
def is_prime(n: int) -> bool:
"""
For 2 <= n <= 1000000, return True if n is prime.
>>> is_prime(87)
False
>>> is_prime(23)
True
>>> is_prime(25363)
False
"""
return sieve[n]
def contains_an_even_digit(n: int) -> bool:
"""
Return True if n contains an even digit.
>>> contains_an_even_digit(0)
True
>>> contains_an_even_digit(975317933)
False
>>> contains_an_even_digit(-245679)
True
"""
return any(digit in "02468" for digit in str(n))
def find_circular_primes(limit: int = 1000000) -> list[int]:
"""
Return circular primes below limit.
>>> len(find_circular_primes(100))
13
>>> len(find_circular_primes(1000000))
55
"""
result = [2] # result already includes the number 2.
for num in range(3, limit + 1, 2):
if is_prime(num) and not contains_an_even_digit(num):
str_num = str(num)
list_nums = [int(str_num[j:] + str_num[:j]) for j in range(len(str_num))]
if all(is_prime(i) for i in list_nums):
result.append(num)
return result
def solution() -> int:
"""
>>> solution()
55
"""
return len(find_circular_primes())
if __name__ == "__main__":
print(f"{len(find_circular_primes()) = }")