Python/other/scoring_algorithm.py
Caeden 4d0c830d2c
Add flake8 pluin flake8 bugbear to pre-commit (#7132)
* ci(pre-commit): Add ``flake8-builtins`` additional dependency to ``pre-commit`` (#7104)

* refactor: Fix ``flake8-builtins`` (#7104)

* fix(lru_cache): Fix naming conventions in docstrings (#7104)

* ci(pre-commit): Order additional dependencies alphabetically (#7104)

* fix(lfu_cache): Correct function name in docstring (#7104)

* Update strings/snake_case_to_camel_pascal_case.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update data_structures/stacks/next_greater_element.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update digital_image_processing/index_calculation.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update graphs/prim.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update hashes/djb2.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* refactor: Rename `_builtin` to `builtin_` ( #7104)

* fix: Rename all instances (#7104)

* refactor: Update variable names (#7104)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* ci: Create ``tox.ini`` and ignore ``A003`` (#7123)

* revert: Remove function name changes (#7104)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Rename tox.ini to .flake8

* Update data_structures/heap/heap.py

Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>

* refactor: Rename `next_` to `next_item` (#7104)

* ci(pre-commit): Add `flake8` plugin `flake8-bugbear` (#7127)

* refactor: Follow `flake8-bugbear` plugin (#7127)

* fix: Correct `knapsack` code (#7127)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
2022-10-13 18:03:06 +02:00

89 lines
2.6 KiB
Python

"""
developed by: markmelnic
original repo: https://github.com/markmelnic/Scoring-Algorithm
Analyse data using a range based percentual proximity algorithm
and calculate the linear maximum likelihood estimation.
The basic principle is that all values supplied will be broken
down to a range from 0 to 1 and each column's score will be added
up to get the total score.
==========
Example for data of vehicles
price|mileage|registration_year
20k |60k |2012
22k |50k |2011
23k |90k |2015
16k |210k |2010
We want the vehicle with the lowest price,
lowest mileage but newest registration year.
Thus the weights for each column are as follows:
[0, 0, 1]
"""
def procentual_proximity(
source_data: list[list[float]], weights: list[int]
) -> list[list[float]]:
"""
weights - int list
possible values - 0 / 1
0 if lower values have higher weight in the data set
1 if higher values have higher weight in the data set
>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
"""
# getting data
data_lists: list[list[float]] = []
for data in source_data:
for i, el in enumerate(data):
if len(data_lists) < i + 1:
data_lists.append([])
data_lists[i].append(float(el))
score_lists: list[list[float]] = []
# calculating each score
for dlist, weight in zip(data_lists, weights):
mind = min(dlist)
maxd = max(dlist)
score: list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)))
except ZeroDivisionError:
score.append(1)
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind))
except ZeroDivisionError:
score.append(0)
# weight not 0 or 1
else:
raise ValueError(f"Invalid weight of {weight:f} provided")
score_lists.append(score)
# initialize final scores
final_scores: list[float] = [0 for i in range(len(score_lists[0]))]
# generate final scores
for slist in score_lists:
for j, ele in enumerate(slist):
final_scores[j] = final_scores[j] + ele
# append scores to source data
for i, ele in enumerate(final_scores):
source_data[i].append(ele)
return source_data