Python/dynamic_programming/minimum_squares_to_represent_a_number.py
Maxim Smolskiy 7fa9b4bf1b
Fix sphinx/build_docs warnings for dynamic_programming (#12484)
* Fix sphinx/build_docs warnings for dynamic_programming

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* Fix

* Fix

* Fix

* Fix

* Fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-12-30 14:52:03 +03:00

50 lines
1.4 KiB
Python

import math
import sys
def minimum_squares_to_represent_a_number(number: int) -> int:
"""
Count the number of minimum squares to represent a number
>>> minimum_squares_to_represent_a_number(25)
1
>>> minimum_squares_to_represent_a_number(37)
2
>>> minimum_squares_to_represent_a_number(21)
3
>>> minimum_squares_to_represent_a_number(58)
2
>>> minimum_squares_to_represent_a_number(-1)
Traceback (most recent call last):
...
ValueError: the value of input must not be a negative number
>>> minimum_squares_to_represent_a_number(0)
1
>>> minimum_squares_to_represent_a_number(12.34)
Traceback (most recent call last):
...
ValueError: the value of input must be a natural number
"""
if number != int(number):
raise ValueError("the value of input must be a natural number")
if number < 0:
raise ValueError("the value of input must not be a negative number")
if number == 0:
return 1
answers = [-1] * (number + 1)
answers[0] = 0
for i in range(1, number + 1):
answer = sys.maxsize
root = int(math.sqrt(i))
for j in range(1, root + 1):
current_answer = 1 + answers[i - (j**2)]
answer = min(answer, current_answer)
answers[i] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()