mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
07e991d553
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038) * refactor: Fix naming conventions (#7038) * Update arithmetic_analysis/lu_decomposition.py Co-authored-by: Christian Clauss <cclauss@me.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038) * chore: Fix naming conventions in doctests (#7038) * fix: Temporarily disable project euler problem 104 (#7069) * chore: Fix naming conventions in doctests (#7038) Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
136 lines
4.3 KiB
Python
136 lines
4.3 KiB
Python
# Required imports to run this file
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
# weighted matrix
|
|
def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) -> np.mat:
|
|
"""
|
|
Calculate the weight for every point in the
|
|
data set. It takes training_point , query_point, and tau
|
|
Here Tau is not a fixed value it can be varied depends on output.
|
|
tau --> bandwidth
|
|
xmat -->Training data
|
|
point --> the x where we want to make predictions
|
|
>>> weighted_matrix(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
|
|
... [24.59,25.69]]), 0.6)
|
|
matrix([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
|
|
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
|
|
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
|
|
"""
|
|
# m is the number of training samples
|
|
m, n = np.shape(training_data_x)
|
|
# Initializing weights as identity matrix
|
|
weights = np.mat(np.eye(m))
|
|
# calculating weights for all training examples [x(i)'s]
|
|
for j in range(m):
|
|
diff = point - training_data_x[j]
|
|
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
|
|
return weights
|
|
|
|
|
|
def local_weight(
|
|
point: np.mat, training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
|
|
) -> np.mat:
|
|
"""
|
|
Calculate the local weights using the weight_matrix function on training data.
|
|
Return the weighted matrix.
|
|
>>> local_weight(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
|
|
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
|
matrix([[0.00873174],
|
|
[0.08272556]])
|
|
"""
|
|
weight = weighted_matrix(point, training_data_x, bandwidth)
|
|
w = (training_data_x.T * (weight * training_data_x)).I * (
|
|
training_data_x.T * weight * training_data_y.T
|
|
)
|
|
|
|
return w
|
|
|
|
|
|
def local_weight_regression(
|
|
training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
|
|
) -> np.mat:
|
|
"""
|
|
Calculate predictions for each data point on axis.
|
|
>>> local_weight_regression(np.mat([[16.99, 10.34], [21.01,23.68],
|
|
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
|
array([1.07173261, 1.65970737, 3.50160179])
|
|
"""
|
|
m, n = np.shape(training_data_x)
|
|
ypred = np.zeros(m)
|
|
|
|
for i, item in enumerate(training_data_x):
|
|
ypred[i] = item * local_weight(
|
|
item, training_data_x, training_data_y, bandwidth
|
|
)
|
|
|
|
return ypred
|
|
|
|
|
|
def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
|
|
"""
|
|
Function used for loading data from the seaborn splitting into x and y points
|
|
>>> pass # this function has no doctest
|
|
"""
|
|
import seaborn as sns
|
|
|
|
data = sns.load_dataset(dataset_name)
|
|
col_a = np.array(data[cola_name]) # total_bill
|
|
col_b = np.array(data[colb_name]) # tip
|
|
|
|
mcol_a = np.mat(col_a)
|
|
mcol_b = np.mat(col_b)
|
|
|
|
m = np.shape(mcol_b)[1]
|
|
one = np.ones((1, m), dtype=int)
|
|
|
|
# horizontal stacking
|
|
training_data_x = np.hstack((one.T, mcol_a.T))
|
|
|
|
return training_data_x, mcol_b, col_a, col_b
|
|
|
|
|
|
def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray:
|
|
"""
|
|
Get predictions with minimum error for each training data
|
|
>>> get_preds(np.mat([[16.99, 10.34], [21.01,23.68],
|
|
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
|
array([1.07173261, 1.65970737, 3.50160179])
|
|
"""
|
|
ypred = local_weight_regression(training_data_x, mcol_b, tau)
|
|
return ypred
|
|
|
|
|
|
def plot_preds(
|
|
training_data_x: np.mat,
|
|
predictions: np.ndarray,
|
|
col_x: np.ndarray,
|
|
col_y: np.ndarray,
|
|
cola_name: str,
|
|
colb_name: str,
|
|
) -> plt.plot:
|
|
"""
|
|
This function used to plot predictions and display the graph
|
|
>>> pass #this function has no doctest
|
|
"""
|
|
xsort = training_data_x.copy()
|
|
xsort.sort(axis=0)
|
|
plt.scatter(col_x, col_y, color="blue")
|
|
plt.plot(
|
|
xsort[:, 1],
|
|
predictions[training_data_x[:, 1].argsort(0)],
|
|
color="yellow",
|
|
linewidth=5,
|
|
)
|
|
plt.title("Local Weighted Regression")
|
|
plt.xlabel(cola_name)
|
|
plt.ylabel(colb_name)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
|
|
predictions = get_preds(training_data_x, mcol_b, 0.5)
|
|
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")
|