mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-05 02:40:16 +00:00
207 lines
5.9 KiB
Python
207 lines
5.9 KiB
Python
import numpy as np
|
|
from numpy import ndarray
|
|
from scipy.optimize import Bounds, LinearConstraint, minimize
|
|
|
|
|
|
def norm_squared(vector: ndarray) -> float:
|
|
"""
|
|
Return the squared second norm of vector
|
|
norm_squared(v) = sum(x * x for x in v)
|
|
|
|
Args:
|
|
vector (ndarray): input vector
|
|
|
|
Returns:
|
|
float: squared second norm of vector
|
|
|
|
>>> int(norm_squared([1, 2]))
|
|
5
|
|
>>> int(norm_squared(np.asarray([1, 2])))
|
|
5
|
|
>>> int(norm_squared([0, 0]))
|
|
0
|
|
"""
|
|
return np.dot(vector, vector)
|
|
|
|
|
|
class SVC:
|
|
"""
|
|
Support Vector Classifier
|
|
|
|
Args:
|
|
kernel (str): kernel to use. Default: linear
|
|
Possible choices:
|
|
- linear
|
|
regularization: constraint for soft margin (data not linearly separable)
|
|
Default: unbound
|
|
|
|
>>> SVC(kernel="asdf")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Unknown kernel: asdf
|
|
|
|
>>> SVC(kernel="rbf")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: rbf kernel requires gamma
|
|
|
|
>>> SVC(kernel="rbf", gamma=-1)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: gamma must be > 0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
regularization: float = np.inf,
|
|
kernel: str = "linear",
|
|
gamma: float = 0.0,
|
|
) -> None:
|
|
self.regularization = regularization
|
|
self.gamma = gamma
|
|
if kernel == "linear":
|
|
self.kernel = self.__linear
|
|
elif kernel == "rbf":
|
|
if self.gamma == 0:
|
|
raise ValueError("rbf kernel requires gamma")
|
|
if not isinstance(self.gamma, (float, int)):
|
|
raise ValueError("gamma must be float or int")
|
|
if not self.gamma > 0:
|
|
raise ValueError("gamma must be > 0")
|
|
self.kernel = self.__rbf
|
|
# in the future, there could be a default value like in sklearn
|
|
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
|
|
# previously it was 1/(n_features)
|
|
else:
|
|
msg = f"Unknown kernel: {kernel}"
|
|
raise ValueError(msg)
|
|
|
|
# kernels
|
|
def __linear(self, vector1: ndarray, vector2: ndarray) -> float:
|
|
"""Linear kernel (as if no kernel used at all)"""
|
|
return np.dot(vector1, vector2)
|
|
|
|
def __rbf(self, vector1: ndarray, vector2: ndarray) -> float:
|
|
"""
|
|
RBF: Radial Basis Function Kernel
|
|
|
|
Note: for more information see:
|
|
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
|
|
|
|
Args:
|
|
vector1 (ndarray): first vector
|
|
vector2 (ndarray): second vector)
|
|
|
|
Returns:
|
|
float: exp(-(gamma * norm_squared(vector1 - vector2)))
|
|
"""
|
|
return np.exp(-(self.gamma * norm_squared(vector1 - vector2)))
|
|
|
|
def fit(self, observations: list[ndarray], classes: ndarray) -> None:
|
|
"""
|
|
Fits the SVC with a set of observations.
|
|
|
|
Args:
|
|
observations (list[ndarray]): list of observations
|
|
classes (ndarray): classification of each observation (in {1, -1})
|
|
"""
|
|
|
|
self.observations = observations
|
|
self.classes = classes
|
|
|
|
# using Wolfe's Dual to calculate w.
|
|
# Primal problem: minimize 1/2*norm_squared(w)
|
|
# constraint: yn(w . xn + b) >= 1
|
|
#
|
|
# With l a vector
|
|
# Dual problem: maximize sum_n(ln) -
|
|
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
|
|
# constraint: self.C >= ln >= 0
|
|
# and sum_n(ln*yn) = 0
|
|
# Then we get w using w = sum_n(ln*yn*xn)
|
|
# At the end we can get b ~= mean(yn - w . xn)
|
|
#
|
|
# Since we use kernels, we only need l_star to calculate b
|
|
# and to classify observations
|
|
|
|
(n,) = np.shape(classes)
|
|
|
|
def to_minimize(candidate: ndarray) -> float:
|
|
"""
|
|
Opposite of the function to maximize
|
|
|
|
Args:
|
|
candidate (ndarray): candidate array to test
|
|
|
|
Return:
|
|
float: Wolfe's Dual result to minimize
|
|
"""
|
|
s = 0
|
|
(n,) = np.shape(candidate)
|
|
for i in range(n):
|
|
for j in range(n):
|
|
s += (
|
|
candidate[i]
|
|
* candidate[j]
|
|
* classes[i]
|
|
* classes[j]
|
|
* self.kernel(observations[i], observations[j])
|
|
)
|
|
return 1 / 2 * s - sum(candidate)
|
|
|
|
ly_contraint = LinearConstraint(classes, 0, 0)
|
|
l_bounds = Bounds(0, self.regularization)
|
|
|
|
l_star = minimize(
|
|
to_minimize, np.ones(n), bounds=l_bounds, constraints=[ly_contraint]
|
|
).x
|
|
self.optimum = l_star
|
|
|
|
# calculating mean offset of separation plane to points
|
|
s = 0
|
|
for i in range(n):
|
|
for j in range(n):
|
|
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
|
|
observations[i], observations[j]
|
|
)
|
|
self.offset = s / n
|
|
|
|
def predict(self, observation: ndarray) -> int:
|
|
"""
|
|
Get the expected class of an observation
|
|
|
|
Args:
|
|
observation (Vector): observation
|
|
|
|
Returns:
|
|
int {1, -1}: expected class
|
|
|
|
>>> xs = [
|
|
... np.asarray([0, 1]), np.asarray([0, 2]),
|
|
... np.asarray([1, 1]), np.asarray([1, 2])
|
|
... ]
|
|
>>> y = np.asarray([1, 1, -1, -1])
|
|
>>> s = SVC()
|
|
>>> s.fit(xs, y)
|
|
>>> s.predict(np.asarray([0, 1]))
|
|
1
|
|
>>> s.predict(np.asarray([1, 1]))
|
|
-1
|
|
>>> s.predict(np.asarray([2, 2]))
|
|
-1
|
|
"""
|
|
s = sum(
|
|
self.optimum[n]
|
|
* self.classes[n]
|
|
* self.kernel(self.observations[n], observation)
|
|
for n in range(len(self.classes))
|
|
)
|
|
return 1 if s + self.offset >= 0 else -1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|