mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
725731c8d2
* updating DIRECTORY.md * Format local_weighted_learning.py doctests for clarity * Refactor local_weighted_learning.py to use np.array instead of np.mat The np.matrix class is planned to be eventually depreciated in favor of np.array, and current use of the class raises warnings in pytest * Update local_weighted_learning.py documentation Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
150 lines
4.2 KiB
Python
150 lines
4.2 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
def weighted_matrix(
|
|
point: np.array, training_data_x: np.array, bandwidth: float
|
|
) -> np.array:
|
|
"""
|
|
Calculate the weight for every point in the data set.
|
|
point --> the x value at which we want to make predictions
|
|
>>> weighted_matrix(
|
|
... np.array([1., 1.]),
|
|
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
|
|
... 0.6
|
|
... )
|
|
array([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
|
|
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
|
|
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
|
|
"""
|
|
m, _ = np.shape(training_data_x) # m is the number of training samples
|
|
weights = np.eye(m) # Initializing weights as identity matrix
|
|
|
|
# calculating weights for all training examples [x(i)'s]
|
|
for j in range(m):
|
|
diff = point - training_data_x[j]
|
|
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2))
|
|
return weights
|
|
|
|
|
|
def local_weight(
|
|
point: np.array,
|
|
training_data_x: np.array,
|
|
training_data_y: np.array,
|
|
bandwidth: float,
|
|
) -> np.array:
|
|
"""
|
|
Calculate the local weights using the weight_matrix function on training data.
|
|
Return the weighted matrix.
|
|
>>> local_weight(
|
|
... np.array([1., 1.]),
|
|
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
|
|
... np.array([[1.01, 1.66, 3.5]]),
|
|
... 0.6
|
|
... )
|
|
array([[0.00873174],
|
|
[0.08272556]])
|
|
"""
|
|
weight = weighted_matrix(point, training_data_x, bandwidth)
|
|
w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ (
|
|
training_data_x.T @ weight @ training_data_y.T
|
|
)
|
|
|
|
return w
|
|
|
|
|
|
def local_weight_regression(
|
|
training_data_x: np.array, training_data_y: np.array, bandwidth: float
|
|
) -> np.array:
|
|
"""
|
|
Calculate predictions for each data point on axis
|
|
>>> local_weight_regression(
|
|
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
|
|
... np.array([[1.01, 1.66, 3.5]]),
|
|
... 0.6
|
|
... )
|
|
array([1.07173261, 1.65970737, 3.50160179])
|
|
"""
|
|
m, _ = np.shape(training_data_x)
|
|
ypred = np.zeros(m)
|
|
|
|
for i, item in enumerate(training_data_x):
|
|
ypred[i] = item @ local_weight(
|
|
item, training_data_x, training_data_y, bandwidth
|
|
)
|
|
|
|
return ypred
|
|
|
|
|
|
def load_data(
|
|
dataset_name: str, cola_name: str, colb_name: str
|
|
) -> tuple[np.array, np.array, np.array, np.array]:
|
|
"""
|
|
Load data from seaborn and split it into x and y points
|
|
"""
|
|
import seaborn as sns
|
|
|
|
data = sns.load_dataset(dataset_name)
|
|
col_a = np.array(data[cola_name]) # total_bill
|
|
col_b = np.array(data[colb_name]) # tip
|
|
|
|
mcol_a = col_a.copy()
|
|
mcol_b = col_b.copy()
|
|
|
|
one = np.ones(np.shape(mcol_b)[0], dtype=int)
|
|
|
|
# pairing elements of one and mcol_a
|
|
training_data_x = np.column_stack((one, mcol_a))
|
|
|
|
return training_data_x, mcol_b, col_a, col_b
|
|
|
|
|
|
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array:
|
|
"""
|
|
Get predictions with minimum error for each training data
|
|
>>> get_preds(
|
|
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
|
|
... np.array([[1.01, 1.66, 3.5]]),
|
|
... 0.6
|
|
... )
|
|
array([1.07173261, 1.65970737, 3.50160179])
|
|
"""
|
|
ypred = local_weight_regression(training_data_x, mcol_b, tau)
|
|
return ypred
|
|
|
|
|
|
def plot_preds(
|
|
training_data_x: np.array,
|
|
predictions: np.array,
|
|
col_x: np.array,
|
|
col_y: np.array,
|
|
cola_name: str,
|
|
colb_name: str,
|
|
) -> plt.plot:
|
|
"""
|
|
Plot predictions and display the graph
|
|
"""
|
|
xsort = training_data_x.copy()
|
|
xsort.sort(axis=0)
|
|
plt.scatter(col_x, col_y, color="blue")
|
|
plt.plot(
|
|
xsort[:, 1],
|
|
predictions[training_data_x[:, 1].argsort(0)],
|
|
color="yellow",
|
|
linewidth=5,
|
|
)
|
|
plt.title("Local Weighted Regression")
|
|
plt.xlabel(cola_name)
|
|
plt.ylabel(colb_name)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
|
|
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
|
|
predictions = get_preds(training_data_x, mcol_b, 0.5)
|
|
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")
|