Python/fractals/sierpinski_triangle.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

77 lines
2.2 KiB
Python

#!/usr/bin/python
"""Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
Simple example of Fractal generation using recursive function.
What is Sierpinski Triangle?
>>The Sierpinski triangle (also with the original orthography Sierpinski), also called
the Sierpinski gasket or the Sierpinski Sieve, is a fractal and attractive fixed set
with the overall shape of an equilateral triangle, subdivided recursively into smaller
equilateral triangles. Originally constructed as a curve, this is one of the basic
examples of self-similar sets, i.e., it is a mathematically generated pattern that can
be reproducible at any magnification or reduction. It is named after the Polish
mathematician Wacław Sierpinski, but appeared as a decorative pattern many centuries
prior to the work of Sierpinski.
Requirements(pip):
- turtle
Python:
- 2.6
Usage:
- $python sierpinski_triangle.py <int:depth_for_fractal>
Credits: This code was written by editing the code from
http://www.riannetrujillo.com/blog/python-fractal/
"""
import sys
import turtle
PROGNAME = "Sierpinski Triangle"
points = [[-175, -125], [0, 175], [175, -125]] # size of triangle
def get_mid(p1, p2):
return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2) # find midpoint
def triangle(points, depth):
my_pen.up()
my_pen.goto(points[0][0], points[0][1])
my_pen.down()
my_pen.goto(points[1][0], points[1][1])
my_pen.goto(points[2][0], points[2][1])
my_pen.goto(points[0][0], points[0][1])
if depth > 0:
triangle(
[points[0], get_mid(points[0], points[1]), get_mid(points[0], points[2])],
depth - 1,
)
triangle(
[points[1], get_mid(points[0], points[1]), get_mid(points[1], points[2])],
depth - 1,
)
triangle(
[points[2], get_mid(points[2], points[1]), get_mid(points[0], points[2])],
depth - 1,
)
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"right format for using this script: "
"$python fractals.py <int:depth_for_fractal>"
)
my_pen = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
triangle(points, int(sys.argv[1]))