mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
9bfc314e87
* Replacing the generator with numpy vector operations from lu_decomposition.
* Revert "Replacing the generator with numpy vector operations from lu_decomposition."
This reverts commit ad217c6616
.
* Added type annotation.
46 lines
1.0 KiB
Python
46 lines
1.0 KiB
Python
# This theorem states that the number of prime factors of n
|
|
# will be approximately log(log(n)) for most natural numbers n
|
|
|
|
import math
|
|
|
|
|
|
def exact_prime_factor_count(n: int) -> int:
|
|
"""
|
|
>>> exact_prime_factor_count(51242183)
|
|
3
|
|
"""
|
|
count = 0
|
|
if n % 2 == 0:
|
|
count += 1
|
|
while n % 2 == 0:
|
|
n = int(n / 2)
|
|
# the n input value must be odd so that
|
|
# we can skip one element (ie i += 2)
|
|
|
|
i = 3
|
|
|
|
while i <= int(math.sqrt(n)):
|
|
if n % i == 0:
|
|
count += 1
|
|
while n % i == 0:
|
|
n = int(n / i)
|
|
i = i + 2
|
|
|
|
# this condition checks the prime
|
|
# number n is greater than 2
|
|
|
|
if n > 2:
|
|
count += 1
|
|
return count
|
|
|
|
|
|
if __name__ == "__main__":
|
|
n = 51242183
|
|
print(f"The number of distinct prime factors is/are {exact_prime_factor_count(n)}")
|
|
print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}")
|
|
|
|
"""
|
|
The number of distinct prime factors is/are 3
|
|
The value of log(log(n)) is 2.8765
|
|
"""
|