Python/machine_learning/logistic_regression.py
Taru 7105f6f648
minor changes
requested changes are addressed
2018-10-17 01:07:29 +05:30

99 lines
2.4 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# # Logistic Regression from scratch
# In[62]:
''' Implementing logistic regression for classification problem
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
# In[63]:
#importing all the required libraries
import numpy as np
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn import datasets
# In[67]:
#sigmoid function or logistic function is used as a hypothesis function in classification problems
def sigmoid_function(z):
return 1/(1+np.exp(-z))
def cost_function(h,y):
return (-y*np.log(h)-(1-y)*np.log(1-h)).mean()
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
def logistic_reg(alpha,X,y,max_iterations=70000):
converged=False
iterations=0
theta=np.zeros(X.shape[1])
while not converged:
z=np.dot(X,theta)
h=sigmoid_function(z)
gradient = np.dot(X.T,(h-y))/y.size
theta=theta-(alpha)*gradient
z=np.dot(X,theta)
h=sigmoid_function(z)
J=cost_function(h,y)
iterations+=1 #update iterations
if iterations== max_iterations:
print("Maximum iterations exceeded!")
print("Minimal cost function J=",J)
converged=True
return theta
# In[68]:
if __name__=='__main__':
iris=datasets.load_iris()
X = iris.data[:, :2]
y = (iris.target != 0) * 1
alpha=0.1
theta=logistic_reg(alpha,X,y,max_iterations=70000)
print(theta)
def predict_prob(X):
return sigmoid_function(np.dot(X,theta)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
x1_min, x1_max = X[:,0].min(), X[:,0].max(),
x2_min, x2_max = X[:,1].min(), X[:,1].max(),
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = predict_prob(grid).reshape(xx1.shape)
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='black');
plt.legend();