mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-05 02:40:16 +00:00
4b79d771cd
* Add more ruff rules * Add more ruff rules * pre-commit: Update ruff v0.0.269 -> v0.0.270 * Apply suggestions from code review * Fix doctest * Fix doctest (ignore whitespace) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
404 lines
14 KiB
Python
404 lines
14 KiB
Python
from typing import Any
|
|
|
|
|
|
def viterbi(
|
|
observations_space: list,
|
|
states_space: list,
|
|
initial_probabilities: dict,
|
|
transition_probabilities: dict,
|
|
emission_probabilities: dict,
|
|
) -> list:
|
|
"""
|
|
Viterbi Algorithm, to find the most likely path of
|
|
states from the start and the expected output.
|
|
https://en.wikipedia.org/wiki/Viterbi_algorithm
|
|
sdafads
|
|
Wikipedia example
|
|
>>> observations = ["normal", "cold", "dizzy"]
|
|
>>> states = ["Healthy", "Fever"]
|
|
>>> start_p = {"Healthy": 0.6, "Fever": 0.4}
|
|
>>> trans_p = {
|
|
... "Healthy": {"Healthy": 0.7, "Fever": 0.3},
|
|
... "Fever": {"Healthy": 0.4, "Fever": 0.6},
|
|
... }
|
|
>>> emit_p = {
|
|
... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1},
|
|
... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6},
|
|
... }
|
|
>>> viterbi(observations, states, start_p, trans_p, emit_p)
|
|
['Healthy', 'Healthy', 'Fever']
|
|
|
|
>>> viterbi((), states, start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
>>> viterbi(observations, (), start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
>>> viterbi(observations, states, {}, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
>>> viterbi(observations, states, start_p, {}, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
>>> viterbi(observations, states, start_p, trans_p, {})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
>>> viterbi("invalid", states, start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: observations_space must be a list
|
|
|
|
>>> viterbi(["valid", 123], states, start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: observations_space must be a list of strings
|
|
|
|
>>> viterbi(observations, "invalid", start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: states_space must be a list
|
|
|
|
>>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: states_space must be a list of strings
|
|
|
|
>>> viterbi(observations, states, "invalid", trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: initial_probabilities must be a dict
|
|
|
|
>>> viterbi(observations, states, {2:2}, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: initial_probabilities all keys must be strings
|
|
|
|
>>> viterbi(observations, states, {"a":2}, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: initial_probabilities all values must be float
|
|
|
|
>>> viterbi(observations, states, start_p, "invalid", emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities must be a dict
|
|
|
|
>>> viterbi(observations, states, start_p, {"a":2}, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities all values must be dict
|
|
|
|
>>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities all keys must be strings
|
|
|
|
>>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities all keys must be strings
|
|
|
|
>>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities nested dictionary all values must be float
|
|
|
|
>>> viterbi(observations, states, start_p, trans_p, "invalid")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: emission_probabilities must be a dict
|
|
|
|
>>> viterbi(observations, states, start_p, trans_p, None)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
|
|
"""
|
|
_validation(
|
|
observations_space,
|
|
states_space,
|
|
initial_probabilities,
|
|
transition_probabilities,
|
|
emission_probabilities,
|
|
)
|
|
# Creates data structures and fill initial step
|
|
probabilities: dict = {}
|
|
pointers: dict = {}
|
|
for state in states_space:
|
|
observation = observations_space[0]
|
|
probabilities[(state, observation)] = (
|
|
initial_probabilities[state] * emission_probabilities[state][observation]
|
|
)
|
|
pointers[(state, observation)] = None
|
|
|
|
# Fills the data structure with the probabilities of
|
|
# different transitions and pointers to previous states
|
|
for o in range(1, len(observations_space)):
|
|
observation = observations_space[o]
|
|
prior_observation = observations_space[o - 1]
|
|
for state in states_space:
|
|
# Calculates the argmax for probability function
|
|
arg_max = ""
|
|
max_probability = -1
|
|
for k_state in states_space:
|
|
probability = (
|
|
probabilities[(k_state, prior_observation)]
|
|
* transition_probabilities[k_state][state]
|
|
* emission_probabilities[state][observation]
|
|
)
|
|
if probability > max_probability:
|
|
max_probability = probability
|
|
arg_max = k_state
|
|
|
|
# Update probabilities and pointers dicts
|
|
probabilities[(state, observation)] = (
|
|
probabilities[(arg_max, prior_observation)]
|
|
* transition_probabilities[arg_max][state]
|
|
* emission_probabilities[state][observation]
|
|
)
|
|
|
|
pointers[(state, observation)] = arg_max
|
|
|
|
# The final observation
|
|
final_observation = observations_space[len(observations_space) - 1]
|
|
|
|
# argmax for given final observation
|
|
arg_max = ""
|
|
max_probability = -1
|
|
for k_state in states_space:
|
|
probability = probabilities[(k_state, final_observation)]
|
|
if probability > max_probability:
|
|
max_probability = probability
|
|
arg_max = k_state
|
|
last_state = arg_max
|
|
|
|
# Process pointers backwards
|
|
previous = last_state
|
|
result = []
|
|
for o in range(len(observations_space) - 1, -1, -1):
|
|
result.append(previous)
|
|
previous = pointers[previous, observations_space[o]]
|
|
result.reverse()
|
|
|
|
return result
|
|
|
|
|
|
def _validation(
|
|
observations_space: Any,
|
|
states_space: Any,
|
|
initial_probabilities: Any,
|
|
transition_probabilities: Any,
|
|
emission_probabilities: Any,
|
|
) -> None:
|
|
"""
|
|
>>> observations = ["normal", "cold", "dizzy"]
|
|
>>> states = ["Healthy", "Fever"]
|
|
>>> start_p = {"Healthy": 0.6, "Fever": 0.4}
|
|
>>> trans_p = {
|
|
... "Healthy": {"Healthy": 0.7, "Fever": 0.3},
|
|
... "Fever": {"Healthy": 0.4, "Fever": 0.6},
|
|
... }
|
|
>>> emit_p = {
|
|
... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1},
|
|
... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6},
|
|
... }
|
|
>>> _validation(observations, states, start_p, trans_p, emit_p)
|
|
|
|
>>> _validation([], states, start_p, trans_p, emit_p)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
"""
|
|
_validate_not_empty(
|
|
observations_space,
|
|
states_space,
|
|
initial_probabilities,
|
|
transition_probabilities,
|
|
emission_probabilities,
|
|
)
|
|
_validate_lists(observations_space, states_space)
|
|
_validate_dicts(
|
|
initial_probabilities, transition_probabilities, emission_probabilities
|
|
)
|
|
|
|
|
|
def _validate_not_empty(
|
|
observations_space: Any,
|
|
states_space: Any,
|
|
initial_probabilities: Any,
|
|
transition_probabilities: Any,
|
|
emission_probabilities: Any,
|
|
) -> None:
|
|
"""
|
|
>>> _validate_not_empty(["a"], ["b"], {"c":0.5},
|
|
... {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
|
|
|
|
>>> _validate_not_empty(["a"], ["b"], {"c":0.5}, {}, {"f": {"g": 0.7}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
>>> _validate_not_empty(["a"], ["b"], None, {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: There's an empty parameter
|
|
"""
|
|
if not all(
|
|
[
|
|
observations_space,
|
|
states_space,
|
|
initial_probabilities,
|
|
transition_probabilities,
|
|
emission_probabilities,
|
|
]
|
|
):
|
|
raise ValueError("There's an empty parameter")
|
|
|
|
|
|
def _validate_lists(observations_space: Any, states_space: Any) -> None:
|
|
"""
|
|
>>> _validate_lists(["a"], ["b"])
|
|
|
|
>>> _validate_lists(1234, ["b"])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: observations_space must be a list
|
|
|
|
>>> _validate_lists(["a"], [3])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: states_space must be a list of strings
|
|
"""
|
|
_validate_list(observations_space, "observations_space")
|
|
_validate_list(states_space, "states_space")
|
|
|
|
|
|
def _validate_list(_object: Any, var_name: str) -> None:
|
|
"""
|
|
>>> _validate_list(["a"], "mock_name")
|
|
|
|
>>> _validate_list("a", "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name must be a list
|
|
>>> _validate_list([0.5], "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name must be a list of strings
|
|
|
|
"""
|
|
if not isinstance(_object, list):
|
|
msg = f"{var_name} must be a list"
|
|
raise ValueError(msg)
|
|
else:
|
|
for x in _object:
|
|
if not isinstance(x, str):
|
|
msg = f"{var_name} must be a list of strings"
|
|
raise ValueError(msg)
|
|
|
|
|
|
def _validate_dicts(
|
|
initial_probabilities: Any,
|
|
transition_probabilities: Any,
|
|
emission_probabilities: Any,
|
|
) -> None:
|
|
"""
|
|
>>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
|
|
|
|
>>> _validate_dicts("invalid", {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: initial_probabilities must be a dict
|
|
>>> _validate_dicts({"c":0.5}, {2: {"e": 0.6}}, {"f": {"g": 0.7}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: transition_probabilities all keys must be strings
|
|
>>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {2: 0.7}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: emission_probabilities all keys must be strings
|
|
>>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": "h"}})
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: emission_probabilities nested dictionary all values must be float
|
|
"""
|
|
_validate_dict(initial_probabilities, "initial_probabilities", float)
|
|
_validate_nested_dict(transition_probabilities, "transition_probabilities")
|
|
_validate_nested_dict(emission_probabilities, "emission_probabilities")
|
|
|
|
|
|
def _validate_nested_dict(_object: Any, var_name: str) -> None:
|
|
"""
|
|
>>> _validate_nested_dict({"a":{"b": 0.5}}, "mock_name")
|
|
|
|
>>> _validate_nested_dict("invalid", "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name must be a dict
|
|
>>> _validate_nested_dict({"a": 8}, "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name all values must be dict
|
|
>>> _validate_nested_dict({"a":{2: 0.5}}, "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name all keys must be strings
|
|
>>> _validate_nested_dict({"a":{"b": 4}}, "mock_name")
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name nested dictionary all values must be float
|
|
"""
|
|
_validate_dict(_object, var_name, dict)
|
|
for x in _object.values():
|
|
_validate_dict(x, var_name, float, True)
|
|
|
|
|
|
def _validate_dict(
|
|
_object: Any, var_name: str, value_type: type, nested: bool = False
|
|
) -> None:
|
|
"""
|
|
>>> _validate_dict({"b": 0.5}, "mock_name", float)
|
|
|
|
>>> _validate_dict("invalid", "mock_name", float)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name must be a dict
|
|
>>> _validate_dict({"a": 8}, "mock_name", dict)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name all values must be dict
|
|
>>> _validate_dict({2: 0.5}, "mock_name",float, True)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name all keys must be strings
|
|
>>> _validate_dict({"b": 4}, "mock_name", float,True)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: mock_name nested dictionary all values must be float
|
|
"""
|
|
if not isinstance(_object, dict):
|
|
msg = f"{var_name} must be a dict"
|
|
raise ValueError(msg)
|
|
if not all(isinstance(x, str) for x in _object):
|
|
msg = f"{var_name} all keys must be strings"
|
|
raise ValueError(msg)
|
|
if not all(isinstance(x, value_type) for x in _object.values()):
|
|
nested_text = "nested dictionary " if nested else ""
|
|
msg = f"{var_name} {nested_text}all values must be {value_type.__name__}"
|
|
raise ValueError(msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from doctest import testmod
|
|
|
|
testmod()
|