mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
79dc7c97ac
* Enable ruff RUF001 rule * Fix * Fix
179 lines
5.4 KiB
Python
179 lines
5.4 KiB
Python
from math import pow, sqrt
|
|
|
|
from scipy.constants import G, c, pi
|
|
|
|
"""
|
|
These two functions will return the radii of impact for a target object
|
|
of mass M and radius R as well as it's effective cross sectional area sigma.
|
|
That is to say any projectile with velocity v passing within sigma, will impact the
|
|
target object with mass M. The derivation of which is given at the bottom
|
|
of this file.
|
|
|
|
The derivation shows that a projectile does not need to aim directly at the target
|
|
body in order to hit it, as R_capture>R_target. Astronomers refer to the effective
|
|
cross section for capture as sigma=π*R_capture**2.
|
|
|
|
This algorithm does not account for an N-body problem.
|
|
|
|
"""
|
|
|
|
|
|
def capture_radii(
|
|
target_body_radius: float, target_body_mass: float, projectile_velocity: float
|
|
) -> float:
|
|
"""
|
|
Input Params:
|
|
-------------
|
|
target_body_radius: Radius of the central body SI units: meters | m
|
|
target_body_mass: Mass of the central body SI units: kilograms | kg
|
|
projectile_velocity: Velocity of object moving toward central body
|
|
SI units: meters/second | m/s
|
|
Returns:
|
|
--------
|
|
>>> capture_radii(6.957e8, 1.99e30, 25000.0)
|
|
17209590691.0
|
|
>>> capture_radii(-6.957e8, 1.99e30, 25000.0)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Radius cannot be less than 0
|
|
>>> capture_radii(6.957e8, -1.99e30, 25000.0)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Mass cannot be less than 0
|
|
>>> capture_radii(6.957e8, 1.99e30, c+1)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Cannot go beyond speed of light
|
|
|
|
Returned SI units:
|
|
------------------
|
|
meters | m
|
|
"""
|
|
|
|
if target_body_mass < 0:
|
|
raise ValueError("Mass cannot be less than 0")
|
|
if target_body_radius < 0:
|
|
raise ValueError("Radius cannot be less than 0")
|
|
if projectile_velocity > c:
|
|
raise ValueError("Cannot go beyond speed of light")
|
|
|
|
escape_velocity_squared = (2 * G * target_body_mass) / target_body_radius
|
|
capture_radius = target_body_radius * sqrt(
|
|
1 + escape_velocity_squared / pow(projectile_velocity, 2)
|
|
)
|
|
return round(capture_radius, 0)
|
|
|
|
|
|
def capture_area(capture_radius: float) -> float:
|
|
"""
|
|
Input Param:
|
|
------------
|
|
capture_radius: The radius of orbital capture and impact for a central body of
|
|
mass M and a projectile moving towards it with velocity v
|
|
SI units: meters | m
|
|
Returns:
|
|
--------
|
|
>>> capture_area(17209590691)
|
|
9.304455331329126e+20
|
|
>>> capture_area(-1)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Cannot have a capture radius less than 0
|
|
|
|
Returned SI units:
|
|
------------------
|
|
meters*meters | m**2
|
|
"""
|
|
|
|
if capture_radius < 0:
|
|
raise ValueError("Cannot have a capture radius less than 0")
|
|
sigma = pi * pow(capture_radius, 2)
|
|
return round(sigma, 0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from doctest import testmod
|
|
|
|
testmod()
|
|
|
|
"""
|
|
Derivation:
|
|
|
|
Let: Mt=target mass, Rt=target radius, v=projectile_velocity,
|
|
r_0=radius of projectile at instant 0 to CM of target
|
|
v_p=v at closest approach,
|
|
r_p=radius from projectile to target CM at closest approach,
|
|
R_capture= radius of impact for projectile with velocity v
|
|
|
|
(1)At time=0 the projectile's energy falling from infinity| E=K+U=0.5*m*(v**2)+0
|
|
|
|
E_initial=0.5*m*(v**2)
|
|
|
|
(2)at time=0 the angular momentum of the projectile relative to CM target|
|
|
L_initial=m*r_0*v*sin(Θ)->m*r_0*v*(R_capture/r_0)->m*v*R_capture
|
|
|
|
L_i=m*v*R_capture
|
|
|
|
(3)The energy of the projectile at closest approach will be its kinetic energy
|
|
at closest approach plus gravitational potential energy(-(GMm)/R)|
|
|
E_p=K_p+U_p->E_p=0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
|
|
|
E_p=0.0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
|
|
|
(4)The angular momentum of the projectile relative to the target at closest
|
|
approach will be L_p=m*r_p*v_p*sin(Θ), however relative to the target Θ=90°
|
|
sin(90°)=1|
|
|
|
|
L_p=m*r_p*v_p
|
|
(5)Using conservation of angular momentum and energy, we can write a quadratic
|
|
equation that solves for r_p|
|
|
|
|
(a)
|
|
Ei=Ep-> 0.5*m*(v**2)=0.5*m*(v_p**2)-(G*Mt*m)/r_p-> v**2=v_p**2-(2*G*Mt)/r_p
|
|
|
|
(b)
|
|
Li=Lp-> m*v*R_capture=m*r_p*v_p-> v*R_capture=r_p*v_p-> v_p=(v*R_capture)/r_p
|
|
|
|
(c) b plugs int a|
|
|
v**2=((v*R_capture)/r_p)**2-(2*G*Mt)/r_p->
|
|
|
|
v**2-(v**2)*(R_c**2)/(r_p**2)+(2*G*Mt)/r_p=0->
|
|
|
|
(v**2)*(r_p**2)+2*G*Mt*r_p-(v**2)*(R_c**2)=0
|
|
|
|
(d) Using the quadratic formula, we'll solve for r_p then rearrange to solve to
|
|
R_capture
|
|
|
|
r_p=(-2*G*Mt ± sqrt(4*G^2*Mt^2+ 4(v^4*R_c^2)))/(2*v^2)->
|
|
|
|
r_p=(-G*Mt ± sqrt(G^2*Mt+v^4*R_c^2))/v^2->
|
|
|
|
r_p<0 is something we can ignore, as it has no physical meaning for our purposes.->
|
|
|
|
r_p=(-G*Mt)/v^2 + sqrt(G^2*Mt^2/v^4 + R_c^2)
|
|
|
|
(e)We are trying to solve for R_c. We are looking for impact, so we want r_p=Rt
|
|
|
|
Rt + G*Mt/v^2 = sqrt(G^2*Mt^2/v^4 + R_c^2)->
|
|
|
|
(Rt + G*Mt/v^2)^2 = G^2*Mt^2/v^4 + R_c^2->
|
|
|
|
Rt^2 + 2*G*Mt*Rt/v^2 + G^2*Mt^2/v^4 = G^2*Mt^2/v^4 + R_c^2->
|
|
|
|
Rt**2 + 2*G*Mt*Rt/v**2 = R_c**2->
|
|
|
|
Rt**2 * (1 + 2*G*Mt/Rt *1/v**2) = R_c**2->
|
|
|
|
escape velocity = sqrt(2GM/R)= v_escape**2=2GM/R->
|
|
|
|
Rt**2 * (1 + v_esc**2/v**2) = R_c**2->
|
|
|
|
(6)
|
|
R_capture = Rt * sqrt(1 + v_esc**2/v**2)
|
|
|
|
Source: Problem Set 3 #8 c.Fall_2017|Honors Astronomy|Professor Rachel Bezanson
|
|
|
|
Source #2: http://www.nssc.ac.cn/wxzygx/weixin/201607/P020160718380095698873.pdf
|
|
8.8 Planetary Rendezvous: Pg.368
|
|
"""
|