mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-24 12:10:16 +00:00
1e1708b8a1
* Added solution for Project Euler problem 77. * Update docstrings, doctest, type annotations and 0-padding in directory name. Reference: #3256 * Implemented lru_cache, better type hints, more doctests for problem 77 * updating DIRECTORY.md * updating DIRECTORY.md * Added solution for Project Euler problem 77. Fixes: 2695 * Update docstrings, doctest, type annotations and 0-padding in directory name. Reference: #3256 * Implemented lru_cache, better type hints, more doctests for problem 77 * better variable names Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
82 lines
2.0 KiB
Python
82 lines
2.0 KiB
Python
"""
|
|
Project Euler Problem 77: https://projecteuler.net/problem=77
|
|
|
|
It is possible to write ten as the sum of primes in exactly five different ways:
|
|
|
|
7 + 3
|
|
5 + 5
|
|
5 + 3 + 2
|
|
3 + 3 + 2 + 2
|
|
2 + 2 + 2 + 2 + 2
|
|
|
|
What is the first value which can be written as the sum of primes in over
|
|
five thousand different ways?
|
|
"""
|
|
|
|
from functools import lru_cache
|
|
from math import ceil
|
|
from typing import Optional, Set
|
|
|
|
NUM_PRIMES = 100
|
|
|
|
primes = set(range(3, NUM_PRIMES, 2))
|
|
primes.add(2)
|
|
prime: int
|
|
|
|
for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2):
|
|
if prime not in primes:
|
|
continue
|
|
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
|
|
|
|
|
|
@lru_cache(maxsize=100)
|
|
def partition(number_to_partition: int) -> Set[int]:
|
|
"""
|
|
Return a set of integers corresponding to unique prime partitions of n.
|
|
The unique prime partitions can be represented as unique prime decompositions,
|
|
e.g. (7+3) <-> 7*3 = 12, (3+3+2+2) = 3*3*2*2 = 36
|
|
>>> partition(10)
|
|
{32, 36, 21, 25, 30}
|
|
>>> partition(15)
|
|
{192, 160, 105, 44, 112, 243, 180, 150, 216, 26, 125, 126}
|
|
>>> len(partition(20))
|
|
26
|
|
"""
|
|
if number_to_partition < 0:
|
|
return set()
|
|
elif number_to_partition == 0:
|
|
return {1}
|
|
|
|
ret: Set[int] = set()
|
|
prime: int
|
|
sub: int
|
|
|
|
for prime in primes:
|
|
if prime > number_to_partition:
|
|
continue
|
|
for sub in partition(number_to_partition - prime):
|
|
ret.add(sub * prime)
|
|
|
|
return ret
|
|
|
|
|
|
def solution(number_unique_partitions: int = 5000) -> Optional[int]:
|
|
"""
|
|
Return the smallest integer that can be written as the sum of primes in over
|
|
m unique ways.
|
|
>>> solution(4)
|
|
10
|
|
>>> solution(500)
|
|
45
|
|
>>> solution(1000)
|
|
53
|
|
"""
|
|
for number_to_partition in range(1, NUM_PRIMES):
|
|
if len(partition(number_to_partition)) > number_unique_partitions:
|
|
return number_to_partition
|
|
return None
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"{solution() = }")
|