mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
64543faa98
* Make some ruff fixes * Undo manual fix * Undo manual fix * Updates from ruff=0.0.251
137 lines
4.8 KiB
Python
137 lines
4.8 KiB
Python
import sys
|
|
from collections import defaultdict
|
|
|
|
|
|
class Heap:
|
|
def __init__(self):
|
|
self.node_position = []
|
|
|
|
def get_position(self, vertex):
|
|
return self.node_position[vertex]
|
|
|
|
def set_position(self, vertex, pos):
|
|
self.node_position[vertex] = pos
|
|
|
|
def top_to_bottom(self, heap, start, size, positions):
|
|
if start > size // 2 - 1:
|
|
return
|
|
else:
|
|
if 2 * start + 2 >= size:
|
|
smallest_child = 2 * start + 1
|
|
else:
|
|
if heap[2 * start + 1] < heap[2 * start + 2]:
|
|
smallest_child = 2 * start + 1
|
|
else:
|
|
smallest_child = 2 * start + 2
|
|
if heap[smallest_child] < heap[start]:
|
|
temp, temp1 = heap[smallest_child], positions[smallest_child]
|
|
heap[smallest_child], positions[smallest_child] = (
|
|
heap[start],
|
|
positions[start],
|
|
)
|
|
heap[start], positions[start] = temp, temp1
|
|
|
|
temp = self.get_position(positions[smallest_child])
|
|
self.set_position(
|
|
positions[smallest_child], self.get_position(positions[start])
|
|
)
|
|
self.set_position(positions[start], temp)
|
|
|
|
self.top_to_bottom(heap, smallest_child, size, positions)
|
|
|
|
# Update function if value of any node in min-heap decreases
|
|
def bottom_to_top(self, val, index, heap, position):
|
|
temp = position[index]
|
|
|
|
while index != 0:
|
|
parent = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2)
|
|
|
|
if val < heap[parent]:
|
|
heap[index] = heap[parent]
|
|
position[index] = position[parent]
|
|
self.set_position(position[parent], index)
|
|
else:
|
|
heap[index] = val
|
|
position[index] = temp
|
|
self.set_position(temp, index)
|
|
break
|
|
index = parent
|
|
else:
|
|
heap[0] = val
|
|
position[0] = temp
|
|
self.set_position(temp, 0)
|
|
|
|
def heapify(self, heap, positions):
|
|
start = len(heap) // 2 - 1
|
|
for i in range(start, -1, -1):
|
|
self.top_to_bottom(heap, i, len(heap), positions)
|
|
|
|
def delete_minimum(self, heap, positions):
|
|
temp = positions[0]
|
|
heap[0] = sys.maxsize
|
|
self.top_to_bottom(heap, 0, len(heap), positions)
|
|
return temp
|
|
|
|
|
|
def prisms_algorithm(adjacency_list):
|
|
"""
|
|
>>> adjacency_list = {0: [[1, 1], [3, 3]],
|
|
... 1: [[0, 1], [2, 6], [3, 5], [4, 1]],
|
|
... 2: [[1, 6], [4, 5], [5, 2]],
|
|
... 3: [[0, 3], [1, 5], [4, 1]],
|
|
... 4: [[1, 1], [2, 5], [3, 1], [5, 4]],
|
|
... 5: [[2, 2], [4, 4]]}
|
|
>>> prisms_algorithm(adjacency_list)
|
|
[(0, 1), (1, 4), (4, 3), (4, 5), (5, 2)]
|
|
"""
|
|
|
|
heap = Heap()
|
|
|
|
visited = [0] * len(adjacency_list)
|
|
nbr_tv = [-1] * len(adjacency_list) # Neighboring Tree Vertex of selected vertex
|
|
# Minimum Distance of explored vertex with neighboring vertex of partial tree
|
|
# formed in graph
|
|
distance_tv = [] # Heap of Distance of vertices from their neighboring vertex
|
|
positions = []
|
|
|
|
for vertex in range(len(adjacency_list)):
|
|
distance_tv.append(sys.maxsize)
|
|
positions.append(vertex)
|
|
heap.node_position.append(vertex)
|
|
|
|
tree_edges = []
|
|
visited[0] = 1
|
|
distance_tv[0] = sys.maxsize
|
|
for neighbor, distance in adjacency_list[0]:
|
|
nbr_tv[neighbor] = 0
|
|
distance_tv[neighbor] = distance
|
|
heap.heapify(distance_tv, positions)
|
|
|
|
for _ in range(1, len(adjacency_list)):
|
|
vertex = heap.delete_minimum(distance_tv, positions)
|
|
if visited[vertex] == 0:
|
|
tree_edges.append((nbr_tv[vertex], vertex))
|
|
visited[vertex] = 1
|
|
for neighbor, distance in adjacency_list[vertex]:
|
|
if (
|
|
visited[neighbor] == 0
|
|
and distance < distance_tv[heap.get_position(neighbor)]
|
|
):
|
|
distance_tv[heap.get_position(neighbor)] = distance
|
|
heap.bottom_to_top(
|
|
distance, heap.get_position(neighbor), distance_tv, positions
|
|
)
|
|
nbr_tv[neighbor] = vertex
|
|
return tree_edges
|
|
|
|
|
|
if __name__ == "__main__": # pragma: no cover
|
|
# < --------- Prims Algorithm --------- >
|
|
edges_number = int(input("Enter number of edges: ").strip())
|
|
adjacency_list = defaultdict(list)
|
|
for _ in range(edges_number):
|
|
edge = [int(x) for x in input().strip().split()]
|
|
adjacency_list[edge[0]].append([edge[1], edge[2]])
|
|
adjacency_list[edge[1]].append([edge[0], edge[2]])
|
|
print(prisms_algorithm(adjacency_list))
|