mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-21 08:42:03 +00:00
179 lines
5.8 KiB
Python
179 lines
5.8 KiB
Python
"""
|
|
Graph Coloring (also called the "m coloring problem") is the problem of
|
|
assigning at most 'm' colors to the vertices of a graph such that
|
|
no two adjacent vertices share the same color.
|
|
|
|
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
|
"""
|
|
|
|
|
|
def valid_coloring(
|
|
neighbours: list[int], colored_vertices: list[int], color: int
|
|
) -> bool:
|
|
"""
|
|
Check if a given vertex can be assigned the specified color
|
|
without violating the graph coloring constraints (i.e., no two adjacent vertices
|
|
have the same color).
|
|
|
|
Procedure:
|
|
For each neighbour check if the coloring constraint is satisfied
|
|
If any of the neighbours fail the constraint return False
|
|
If all neighbours validate the constraint return True
|
|
|
|
Parameters:
|
|
neighbours: The list representing which vertices
|
|
are adjacent to the current vertex.
|
|
1 indicates an edge between the current vertex
|
|
and the neighbour.
|
|
colored_vertices: List of current color assignments for all vertices
|
|
(-1 means uncolored).
|
|
color: The color we are trying to assign to the current vertex.
|
|
|
|
Returns:
|
|
True if the vertex can be safely colored with the given color,
|
|
otherwise False.
|
|
|
|
Examples:
|
|
>>> neighbours = [0, 1, 0, 1, 0]
|
|
>>> colored_vertices = [0, 2, 1, 2, 0]
|
|
>>> color = 1
|
|
>>> valid_coloring(neighbours, colored_vertices, color)
|
|
True
|
|
|
|
>>> color = 2
|
|
>>> valid_coloring(neighbours, colored_vertices, color)
|
|
False
|
|
|
|
>>> neighbors = [1, 0, 1, 0]
|
|
>>> colored_vertices = [-1, -1, -1, -1]
|
|
>>> color = 0
|
|
>>> valid_coloring(neighbors, colored_vertices, color)
|
|
True
|
|
"""
|
|
# Check if any adjacent vertex has already been colored with the same color
|
|
return not any(
|
|
neighbour == 1 and colored_vertices[i] == color
|
|
for i, neighbour in enumerate(neighbours)
|
|
)
|
|
|
|
|
|
def util_color(
|
|
graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int
|
|
) -> bool:
|
|
"""
|
|
Recursive function to try and color the graph using backtracking.
|
|
|
|
Base Case:
|
|
1. Check if coloring is complete
|
|
1.1 If complete return True (meaning that we successfully colored the graph)
|
|
|
|
Recursive Step:
|
|
2. Iterates over each color:
|
|
Check if the current coloring is valid:
|
|
2.1. Color given vertex
|
|
2.2. Do recursive call, check if this coloring leads to a solution
|
|
2.4. if current coloring leads to a solution return
|
|
2.5. Uncolor given vertex
|
|
|
|
Parameters:
|
|
graph: Adjacency matrix representing the graph.
|
|
graph[i][j] is 1 if there is an edge
|
|
between vertex i and j.
|
|
max_colors: Maximum number of colors allowed (m in the m-coloring problem).
|
|
colored_vertices: Current color assignments for each vertex.
|
|
-1 indicates that the vertex has not been colored
|
|
yet.
|
|
index: The current vertex index being processed.
|
|
|
|
Returns:
|
|
True if the graph can be colored using at most max_colors, otherwise False.
|
|
|
|
Examples:
|
|
>>> graph = [[0, 1, 0, 0, 0],
|
|
... [1, 0, 1, 0, 1],
|
|
... [0, 1, 0, 1, 0],
|
|
... [0, 1, 1, 0, 0],
|
|
... [0, 1, 0, 0, 0]]
|
|
>>> max_colors = 3
|
|
>>> colored_vertices = [0, 1, 0, 0, 0]
|
|
>>> index = 3
|
|
|
|
>>> util_color(graph, max_colors, colored_vertices, index)
|
|
True
|
|
|
|
>>> max_colors = 2
|
|
>>> util_color(graph, max_colors, colored_vertices, index)
|
|
False
|
|
"""
|
|
# Base Case: If all vertices have been assigned a color, we have a valid solution
|
|
if index == len(graph):
|
|
return True
|
|
|
|
# Try each color for the current vertex
|
|
for color in range(max_colors):
|
|
# Check if it's valid to color the current vertex with 'color'
|
|
if valid_coloring(graph[index], colored_vertices, color):
|
|
colored_vertices[index] = color # Assign color
|
|
# Recur to color the rest of the vertices
|
|
if util_color(graph, max_colors, colored_vertices, index + 1):
|
|
return True
|
|
# Backtrack if no solution found with the current assignment
|
|
colored_vertices[index] = -1
|
|
|
|
return False # Return False if no valid coloring is possible
|
|
|
|
|
|
def color(graph: list[list[int]], max_colors: int) -> list[int]:
|
|
"""
|
|
Attempt to color the graph with at most max_colors colors such that no two adjacent
|
|
vertices have the same color.
|
|
If it is possible, returns the list of color assignments;
|
|
otherwise, returns an empty list.
|
|
|
|
Parameters:
|
|
graph: Adjacency matrix representing the graph.
|
|
max_colors: Maximum number of colors allowed.
|
|
|
|
Returns:
|
|
List of color assignments if the graph can be colored using max_colors.
|
|
Each index in the list represents the color assigned
|
|
to the corresponding vertex.
|
|
If coloring is not possible, returns an empty list.
|
|
|
|
Examples:
|
|
>>> graph = [[0, 1, 0, 0, 0],
|
|
... [1, 0, 1, 0, 1],
|
|
... [0, 1, 0, 1, 0],
|
|
... [0, 1, 1, 0, 0],
|
|
... [0, 1, 0, 0, 0]]
|
|
>>> max_colors = 3
|
|
>>> color(graph, max_colors)
|
|
[0, 1, 0, 2, 0]
|
|
|
|
>>> max_colors = 2
|
|
>>> color(graph, max_colors)
|
|
[]
|
|
|
|
>>> graph = [[0, 1], [1, 0]] # Simple 2-node graph
|
|
>>> max_colors = 2
|
|
>>> color(graph, max_colors)
|
|
[0, 1]
|
|
|
|
>>> graph = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] # Complete graph of 3 vertices
|
|
>>> max_colors = 2
|
|
>>> color(graph, max_colors)
|
|
[]
|
|
|
|
>>> max_colors = 3
|
|
>>> color(graph, max_colors)
|
|
[0, 1, 2]
|
|
"""
|
|
# Initialize all vertices as uncolored (-1)
|
|
colored_vertices = [-1] * len(graph)
|
|
|
|
# Use the utility function to try and color the graph starting from vertex 0
|
|
if util_color(graph, max_colors, colored_vertices, 0):
|
|
return colored_vertices # The successful color assignment
|
|
|
|
return [] # No valid coloring is possible
|