Python/graphs/edmonds_blossom_algorithm.py
2024-10-14 15:56:31 +00:00

268 lines
10 KiB
Python

from collections import deque
class BlossomAuxData:
"""Class to hold auxiliary data during the blossom algorithm's execution."""
def __init__(
self,
queue: deque,
parent: list[int],
base: list[int],
in_blossom: list[bool],
match: list[int],
in_queue: list[bool],
) -> None:
"""
Initializes the BlossomAuxData instance.
Args:
queue: A deque for BFS processing.
parent: List of parent vertices in the augmenting path.
base: List of base vertices for each vertex.
in_blossom: Boolean list indicating if a vertex is in a blossom.
match: List of matched vertices.
in_queue: Boolean list indicating if a vertex is in the queue.
"""
self.queue = queue
self.parent = parent
self.base = base
self.in_blossom = in_blossom
self.match = match
self.in_queue = in_queue
class BlossomData:
"""Class to encapsulate data related to a blossom in the graph."""
def __init__(
self,
aux_data: BlossomAuxData,
vertex_u: int,
vertex_v: int,
lowest_common_ancestor: int,
) -> None:
"""
Initializes the BlossomData instance.
Args:
aux_data: The auxiliary data related to the blossom.
vertex_u: One vertex in the blossom.
vertex_v: The other vertex in the blossom.
lowest_common_ancestor: The lowest common ancestor of vertex_u and vertex_v.
"""
self.aux_data = aux_data
self.vertex_u = vertex_u
self.vertex_v = vertex_v
self.lowest_common_ancestor = lowest_common_ancestor
class EdmondsBlossomAlgorithm:
UNMATCHED = -1 # Constant to represent unmatched vertices
@staticmethod
def maximum_matching(edges: list[list[int]], vertex_count: int) -> list[list[int]]:
"""
Finds the maximum matching in a graph using the Edmonds Blossom Algorithm.
Args:
edges: A list of edges represented as pairs of vertices.
vertex_count: The total number of vertices in the graph.
Returns:
A list of matched pairs in the form of a list of lists.
"""
# Create an adjacency list for the graph
graph: list[list[int]] = [[] for _ in range(vertex_count)]
# Populate the graph with the edges
for edge in edges:
u, v = edge
graph[u].append(v)
graph[v].append(u)
# All vertices are initially unmatched
match: list[int] = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
parent: list[int] = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
# Each vertex is its own base initially
base: list[int] = list(range(vertex_count))
in_blossom: list[bool] = [False] * vertex_count
# Tracks vertices in the BFS queue
in_queue: list[bool] = [False] * vertex_count
# Main logic for finding maximum matching
for u in range(vertex_count):
# Only consider unmatched vertices
if match[u] == EdmondsBlossomAlgorithm.UNMATCHED:
# BFS initialization
parent = [EdmondsBlossomAlgorithm.UNMATCHED] * vertex_count
base = list(range(vertex_count))
in_blossom = [False] * vertex_count
in_queue = [False] * vertex_count
queue = deque([u]) # Start BFS from the unmatched vertex
in_queue[u] = True
augmenting_path_found = False
# BFS to find augmenting paths
while queue and not augmenting_path_found:
current = queue.popleft() # Get the current vertex
for y in graph[current]: # Explore adjacent vertices
# Skip if we're looking at the current match
if match[current] == y:
continue
if base[current] == base[y]: # Avoid self-loops
continue
if parent[y] == EdmondsBlossomAlgorithm.UNMATCHED:
# Case 1: y is unmatched;
# we've found an augmenting path
if match[y] == EdmondsBlossomAlgorithm.UNMATCHED:
parent[y] = current # Update the parent
augmenting_path_found = True
# Augment along this path
EdmondsBlossomAlgorithm.update_matching(
match, parent, y
)
break
# Case 2: y is matched;
# add y's match to the queue
z = match[y]
parent[y] = current
parent[z] = y
if not in_queue[z]: # If z is not already in the queue
queue.append(z)
in_queue[z] = True
else:
# Case 3: Both current and y have a parent;
# check for a cycle/blossom
base_u = EdmondsBlossomAlgorithm.find_base(
base, parent, current, y
)
if base_u != EdmondsBlossomAlgorithm.UNMATCHED:
EdmondsBlossomAlgorithm.contract_blossom(
BlossomData(
BlossomAuxData(
queue,
parent,
base,
in_blossom,
match,
in_queue,
),
current,
y,
base_u,
)
)
# Create result list of matched pairs
matching_result: list[list[int]] = []
for v in range(vertex_count):
if (
match[v] != EdmondsBlossomAlgorithm.UNMATCHED and v < match[v]
): # Ensure pairs are unique
matching_result.append([v, match[v]])
return matching_result
@staticmethod
def update_matching(
match: list[int], parent: list[int], matched_vertex: int
) -> None:
"""
Updates the matching based on the augmenting path found.
Args:
match: The current match list.
parent: The parent list from BFS traversal.
matched_vertex: The vertex where the augmenting path ends.
"""
while matched_vertex != EdmondsBlossomAlgorithm.UNMATCHED:
v = parent[matched_vertex] # Get the parent vertex
next_match = match[v] # Store the next match
match[v] = matched_vertex # Update match for v
match[matched_vertex] = v # Update match for matched_vertex
matched_vertex = next_match # Move to the next vertex
@staticmethod
def find_base(
base: list[int], parent: list[int], vertex_u: int, vertex_v: int
) -> int:
"""
Finds the base of the blossom.
Args:
base: The base array for each vertex.
parent: The parent array from BFS.
vertex_u: One endpoint of the blossom.
vertex_v: The other endpoint of the blossom.
Returns:
The lowest common ancestor of vertex_u and vertex_v in the blossom.
"""
visited: list[bool] = [False] * len(base)
# Mark ancestors of vertex_u
current_vertex_u = vertex_u
while True:
current_vertex_u = base[current_vertex_u]
# Mark this base as visited
visited[current_vertex_u] = True
if parent[current_vertex_u] == EdmondsBlossomAlgorithm.UNMATCHED:
break
current_vertex_u = parent[current_vertex_u]
# Find the common ancestor of vertex_v
current_vertex_v = vertex_v
while True:
current_vertex_v = base[current_vertex_v]
# Check if we've already visited this base
if visited[current_vertex_v]:
return current_vertex_v
current_vertex_v = parent[current_vertex_v]
@staticmethod
def contract_blossom(blossom_data: BlossomData) -> None:
"""
Contracts a blossom found during the matching process.
Args:
blossom_data: The data related to the blossom to be contracted.
"""
# Mark vertices in the blossom
for x in range(
blossom_data.vertex_u,
blossom_data.aux_data.base[blossom_data.vertex_u]
!= blossom_data.lowest_common_ancestor,
):
base_x = blossom_data.aux_data.base[x]
match_base_x = blossom_data.aux_data.base[blossom_data.aux_data.match[x]]
# Mark the base as in a blossom
blossom_data.aux_data.in_blossom[base_x] = True
blossom_data.aux_data.in_blossom[match_base_x] = True
for x in range(
blossom_data.vertex_v,
blossom_data.aux_data.base[blossom_data.vertex_v]
!= blossom_data.lowest_common_ancestor,
):
base_x = blossom_data.aux_data.base[x]
match_base_x = blossom_data.aux_data.base[blossom_data.aux_data.match[x]]
# Mark the base as in a blossom
blossom_data.aux_data.in_blossom[base_x] = True
blossom_data.aux_data.in_blossom[match_base_x] = True
# Update the base for all marked vertices
for i in range(len(blossom_data.aux_data.base)):
if blossom_data.aux_data.in_blossom[blossom_data.aux_data.base[i]]:
# Contract to the lowest common ancestor
blossom_data.aux_data.base[i] = blossom_data.lowest_common_ancestor
if not blossom_data.aux_data.in_queue[i]:
# Add to queue if not already present
blossom_data.aux_data.queue.append(i)
blossom_data.aux_data.in_queue[i] = True