Python/maths/newton_raphson.py
2019-06-10 12:16:36 +05:30

51 lines
1.7 KiB
Python

'''
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
'''
import math as m
def calc_derivative(f, a, h=0.001):
'''
Calculates derivative at point a for function f using finite difference
method
'''
return (f(a+h)-f(a-h))/(2*h)
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False):
a = x0 #set the initial guess
steps = [a]
error = abs(f(a))
f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x)
for _ in range(maxiter):
if f1(a) == 0:
raise ValueError("No converging solution found")
a = a - f(a)/f1(a) #Calculate the next estimate
if logsteps:
steps.append(a)
error = abs(f(a))
if error < maxerror:
break
else:
raise ValueError("Iteration limit reached, no converging solution found")
if logsteps:
#If logstep is true, then log intermediate steps
return a, error, steps
return a, error
if __name__ == '__main__':
import matplotlib.pyplot as plt
f = lambda x:m.tanh(x)**2-m.exp(3*x)
solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True)
plt.plot([abs(f(x)) for x in steps])
plt.xlabel("step")
plt.ylabel("error")
plt.show()
print("solution = {%f}, error = {%f}" % (solution, error))