mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
b64c4af296
* Create Gaussian_Naive_Bayes.py Added Gaussian Naive Bayes algorithm in the module machine learning * Rename Gaussian_Naive_Bayes.py to gaussian_naive_bayes.py * requirements.txt: pip install xgboost Co-authored-by: Christian Clauss <cclauss@me.com>
46 lines
1.0 KiB
Python
46 lines
1.0 KiB
Python
# Gaussian Naive Bayes Example
|
|
|
|
from sklearn.naive_bayes import GaussianNB
|
|
from sklearn.metrics import plot_confusion_matrix
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.model_selection import train_test_split
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def main():
|
|
|
|
"""
|
|
Gaussian Naive Bayes Example using sklearn function.
|
|
Iris type dataset is used to demonstrate algorithm.
|
|
"""
|
|
|
|
# Load Iris dataset
|
|
iris = load_iris()
|
|
|
|
# Split dataset into train and test data
|
|
X = iris["data"] # features
|
|
Y = iris["target"]
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
|
X, Y, test_size=0.3, random_state=1
|
|
)
|
|
|
|
# Gaussian Naive Bayes
|
|
NB_model = GaussianNB()
|
|
NB_model.fit(x_train, y_train)
|
|
|
|
# Display Confusion Matrix
|
|
plot_confusion_matrix(
|
|
NB_model,
|
|
x_test,
|
|
y_test,
|
|
display_labels=iris["target_names"],
|
|
cmap="Blues",
|
|
normalize="true",
|
|
)
|
|
plt.title("Normalized Confusion Matrix - IRIS Dataset")
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|