mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
421ace81ed
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.0.285 → v0.0.286](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.285...v0.0.286) - [github.com/tox-dev/pyproject-fmt: 0.13.1 → 1.1.0](https://github.com/tox-dev/pyproject-fmt/compare/0.13.1...1.1.0) * updating DIRECTORY.md * Fis ruff rules PIE808,PLR1714 --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
74 lines
2.2 KiB
Python
74 lines
2.2 KiB
Python
"""
|
|
This is pure Python implementation of counting sort algorithm
|
|
For doctests run following command:
|
|
python -m doctest -v counting_sort.py
|
|
or
|
|
python3 -m doctest -v counting_sort.py
|
|
For manual testing run:
|
|
python counting_sort.py
|
|
"""
|
|
|
|
|
|
def counting_sort(collection):
|
|
"""Pure implementation of counting sort algorithm in Python
|
|
:param collection: some mutable ordered collection with heterogeneous
|
|
comparable items inside
|
|
:return: the same collection ordered by ascending
|
|
Examples:
|
|
>>> counting_sort([0, 5, 3, 2, 2])
|
|
[0, 2, 2, 3, 5]
|
|
>>> counting_sort([])
|
|
[]
|
|
>>> counting_sort([-2, -5, -45])
|
|
[-45, -5, -2]
|
|
"""
|
|
# if the collection is empty, returns empty
|
|
if collection == []:
|
|
return []
|
|
|
|
# get some information about the collection
|
|
coll_len = len(collection)
|
|
coll_max = max(collection)
|
|
coll_min = min(collection)
|
|
|
|
# create the counting array
|
|
counting_arr_length = coll_max + 1 - coll_min
|
|
counting_arr = [0] * counting_arr_length
|
|
|
|
# count how much a number appears in the collection
|
|
for number in collection:
|
|
counting_arr[number - coll_min] += 1
|
|
|
|
# sum each position with it's predecessors. now, counting_arr[i] tells
|
|
# us how many elements <= i has in the collection
|
|
for i in range(1, counting_arr_length):
|
|
counting_arr[i] = counting_arr[i] + counting_arr[i - 1]
|
|
|
|
# create the output collection
|
|
ordered = [0] * coll_len
|
|
|
|
# place the elements in the output, respecting the original order (stable
|
|
# sort) from end to begin, updating counting_arr
|
|
for i in reversed(range(coll_len)):
|
|
ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i]
|
|
counting_arr[collection[i] - coll_min] -= 1
|
|
|
|
return ordered
|
|
|
|
|
|
def counting_sort_string(string):
|
|
"""
|
|
>>> counting_sort_string("thisisthestring")
|
|
'eghhiiinrsssttt'
|
|
"""
|
|
return "".join([chr(i) for i in counting_sort([ord(c) for c in string])])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Test string sort
|
|
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
|
|
|
|
user_input = input("Enter numbers separated by a comma:\n").strip()
|
|
unsorted = [int(item) for item in user_input.split(",")]
|
|
print(counting_sort(unsorted))
|