Python/quantum/deutsch_jozsa.py
Tianyi Zheng 2859d4bf3a
Remove references to depreciated QasmSimulator (#7417)
* Fix typos

* Replace depreciated QasmSimulator in Deutsch-Jozsa algorithm

* Replace depreciated QasmSimulator in half adder algorithm

* Replace depreciated QasmSimulator in not gate algorithm

* Replace depreciated QasmSimulator in full adder algorithm

* Simplify qiskit import

* Make formatting more consistent

* Replace depreciated QasmSimulator in quantum entanglement algorithm

* Replace depreciated QasmSimulator in ripple adder algorithm

* Replace depreciated QasmSimulator in qubit measure algorithm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* updating DIRECTORY.md

* updating DIRECTORY.md

* Remove qiskit import alias for clarity

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2022-10-19 22:12:44 +02:00

125 lines
4.4 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Deutsch-Jozsa Algorithm is one of the first examples of a quantum
algorithm that is exponentially faster than any possible deterministic
classical algorithm
Premise:
We are given a hidden Boolean function f,
which takes as input a string of bits, and returns either 0 or 1:
f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1
The property of the given Boolean function is that it is guaranteed to
either be balanced or constant. A constant function returns all 0's
or all 1's for any input, while a balanced function returns 0's for
exactly half of all inputs and 1's for the other half. Our task is to
determine whether the given function is balanced or constant.
References:
- https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm
- https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html
"""
import numpy as np
import qiskit
def dj_oracle(case: str, num_qubits: int) -> qiskit.QuantumCircuit:
"""
Returns a Quantum Circuit for the Oracle function.
The circuit returned can represent balanced or constant function,
according to the arguments passed
"""
# This circuit has num_qubits+1 qubits: the size of the input,
# plus one output qubit
oracle_qc = qiskit.QuantumCircuit(num_qubits + 1)
# First, let's deal with the case in which oracle is balanced
if case == "balanced":
# First generate a random number that tells us which CNOTs to
# wrap in X-gates:
b = np.random.randint(1, 2**num_qubits)
# Next, format 'b' as a binary string of length 'n', padded with zeros:
b_str = format(b, f"0{num_qubits}b")
# Next, we place the first X-gates. Each digit in our binary string
# corresponds to a qubit, if the digit is 0, we do nothing, if it's 1
# we apply an X-gate to that qubit:
for index, bit in enumerate(b_str):
if bit == "1":
oracle_qc.x(index)
# Do the controlled-NOT gates for each qubit, using the output qubit
# as the target:
for index in range(num_qubits):
oracle_qc.cx(index, num_qubits)
# Next, place the final X-gates
for index, bit in enumerate(b_str):
if bit == "1":
oracle_qc.x(index)
# Case in which oracle is constant
if case == "constant":
# First decide what the fixed output of the oracle will be
# (either always 0 or always 1)
output = np.random.randint(2)
if output == 1:
oracle_qc.x(num_qubits)
oracle_gate = oracle_qc.to_gate()
oracle_gate.name = "Oracle" # To show when we display the circuit
return oracle_gate
def dj_algorithm(
oracle: qiskit.QuantumCircuit, num_qubits: int
) -> qiskit.QuantumCircuit:
"""
Returns the complete Deutsch-Jozsa Quantum Circuit,
adding Input & Output registers and Hadamard & Measurement Gates,
to the Oracle Circuit passed in arguments
"""
dj_circuit = qiskit.QuantumCircuit(num_qubits + 1, num_qubits)
# Set up the output qubit:
dj_circuit.x(num_qubits)
dj_circuit.h(num_qubits)
# And set up the input register:
for qubit in range(num_qubits):
dj_circuit.h(qubit)
# Let's append the oracle gate to our circuit:
dj_circuit.append(oracle, range(num_qubits + 1))
# Finally, perform the H-gates again and measure:
for qubit in range(num_qubits):
dj_circuit.h(qubit)
for i in range(num_qubits):
dj_circuit.measure(i, i)
return dj_circuit
def deutsch_jozsa(case: str, num_qubits: int) -> qiskit.result.counts.Counts:
"""
Main function that builds the circuit using other helper functions,
runs the experiment 1000 times & returns the resultant qubit counts
>>> deutsch_jozsa("constant", 3)
{'000': 1000}
>>> deutsch_jozsa("balanced", 3)
{'111': 1000}
"""
# Use Aer's simulator
simulator = qiskit.Aer.get_backend("aer_simulator")
oracle_gate = dj_oracle(case, num_qubits)
dj_circuit = dj_algorithm(oracle_gate, num_qubits)
# Execute the circuit on the simulator
job = qiskit.execute(dj_circuit, simulator, shots=1000)
# Return the histogram data of the results of the experiment.
return job.result().get_counts(dj_circuit)
if __name__ == "__main__":
print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}")
print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")