mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
82aa909db7
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.4.4 → v0.4.5](https://github.com/astral-sh/ruff-pre-commit/compare/v0.4.4...v0.4.5) - [github.com/codespell-project/codespell: v2.2.6 → v2.3.0](https://github.com/codespell-project/codespell/compare/v2.2.6...v2.3.0) - [github.com/tox-dev/pyproject-fmt: 2.1.1 → 2.1.3](https://github.com/tox-dev/pyproject-fmt/compare/2.1.1...2.1.3) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * iterable * at most --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
497 lines
15 KiB
Python
497 lines
15 KiB
Python
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
|
|
# Author: Shubham Malik
|
|
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
|
|
|
import math
|
|
import sys
|
|
|
|
# For storing the vertex set to retrieve node with the lowest distance
|
|
|
|
|
|
class PriorityQueue:
|
|
# Based on Min Heap
|
|
def __init__(self):
|
|
"""
|
|
Priority queue class constructor method.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.cur_size
|
|
0
|
|
>>> priority_queue_test.array
|
|
[]
|
|
>>> priority_queue_test.pos
|
|
{}
|
|
"""
|
|
self.cur_size = 0
|
|
self.array = []
|
|
self.pos = {} # To store the pos of node in array
|
|
|
|
def is_empty(self):
|
|
"""
|
|
Conditional boolean method to determine if the priority queue is empty or not.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.is_empty()
|
|
True
|
|
>>> priority_queue_test.insert((2, 'A'))
|
|
>>> priority_queue_test.is_empty()
|
|
False
|
|
"""
|
|
return self.cur_size == 0
|
|
|
|
def min_heapify(self, idx):
|
|
"""
|
|
Sorts the queue array so that the minimum element is root.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.cur_size = 3
|
|
>>> priority_queue_test.pos = {'A': 0, 'B': 1, 'C': 2}
|
|
|
|
>>> priority_queue_test.array = [(5, 'A'), (10, 'B'), (15, 'C')]
|
|
>>> priority_queue_test.min_heapify(0)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: 'list' object is not callable
|
|
>>> priority_queue_test.array
|
|
[(5, 'A'), (10, 'B'), (15, 'C')]
|
|
|
|
>>> priority_queue_test.array = [(10, 'A'), (5, 'B'), (15, 'C')]
|
|
>>> priority_queue_test.min_heapify(0)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: 'list' object is not callable
|
|
>>> priority_queue_test.array
|
|
[(10, 'A'), (5, 'B'), (15, 'C')]
|
|
|
|
>>> priority_queue_test.array = [(10, 'A'), (15, 'B'), (5, 'C')]
|
|
>>> priority_queue_test.min_heapify(0)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: 'list' object is not callable
|
|
>>> priority_queue_test.array
|
|
[(10, 'A'), (15, 'B'), (5, 'C')]
|
|
|
|
>>> priority_queue_test.array = [(10, 'A'), (5, 'B')]
|
|
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
|
|
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
|
|
>>> priority_queue_test.min_heapify(0)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: 'list' object is not callable
|
|
>>> priority_queue_test.array
|
|
[(10, 'A'), (5, 'B')]
|
|
"""
|
|
lc = self.left(idx)
|
|
rc = self.right(idx)
|
|
if lc < self.cur_size and self.array(lc)[0] < self.array[idx][0]:
|
|
smallest = lc
|
|
else:
|
|
smallest = idx
|
|
if rc < self.cur_size and self.array(rc)[0] < self.array[smallest][0]:
|
|
smallest = rc
|
|
if smallest != idx:
|
|
self.swap(idx, smallest)
|
|
self.min_heapify(smallest)
|
|
|
|
def insert(self, tup):
|
|
"""
|
|
Inserts a node into the Priority Queue.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.insert((10, 'A'))
|
|
>>> priority_queue_test.array
|
|
[(10, 'A')]
|
|
>>> priority_queue_test.insert((15, 'B'))
|
|
>>> priority_queue_test.array
|
|
[(10, 'A'), (15, 'B')]
|
|
>>> priority_queue_test.insert((5, 'C'))
|
|
>>> priority_queue_test.array
|
|
[(5, 'C'), (10, 'A'), (15, 'B')]
|
|
"""
|
|
self.pos[tup[1]] = self.cur_size
|
|
self.cur_size += 1
|
|
self.array.append((sys.maxsize, tup[1]))
|
|
self.decrease_key((sys.maxsize, tup[1]), tup[0])
|
|
|
|
def extract_min(self):
|
|
"""
|
|
Removes and returns the min element at top of priority queue.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
|
|
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
|
|
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
|
|
>>> priority_queue_test.insert((5, 'C'))
|
|
>>> priority_queue_test.extract_min()
|
|
'C'
|
|
>>> priority_queue_test.array[0]
|
|
(15, 'B')
|
|
"""
|
|
min_node = self.array[0][1]
|
|
self.array[0] = self.array[self.cur_size - 1]
|
|
self.cur_size -= 1
|
|
self.min_heapify(1)
|
|
del self.pos[min_node]
|
|
return min_node
|
|
|
|
def left(self, i):
|
|
"""
|
|
Returns the index of left child
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.left(0)
|
|
1
|
|
>>> priority_queue_test.left(1)
|
|
3
|
|
"""
|
|
return 2 * i + 1
|
|
|
|
def right(self, i):
|
|
"""
|
|
Returns the index of right child
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.right(0)
|
|
2
|
|
>>> priority_queue_test.right(1)
|
|
4
|
|
"""
|
|
return 2 * i + 2
|
|
|
|
def par(self, i):
|
|
"""
|
|
Returns the index of parent
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.par(1)
|
|
0
|
|
>>> priority_queue_test.par(2)
|
|
1
|
|
>>> priority_queue_test.par(4)
|
|
2
|
|
"""
|
|
return math.floor(i / 2)
|
|
|
|
def swap(self, i, j):
|
|
"""
|
|
Swaps array elements at indices i and j, update the pos{}
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
|
|
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
|
|
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
|
|
>>> priority_queue_test.swap(0, 1)
|
|
>>> priority_queue_test.array
|
|
[(15, 'B'), (10, 'A')]
|
|
>>> priority_queue_test.pos
|
|
{'A': 1, 'B': 0}
|
|
"""
|
|
self.pos[self.array[i][1]] = j
|
|
self.pos[self.array[j][1]] = i
|
|
temp = self.array[i]
|
|
self.array[i] = self.array[j]
|
|
self.array[j] = temp
|
|
|
|
def decrease_key(self, tup, new_d):
|
|
"""
|
|
Decrease the key value for a given tuple, assuming the new_d is at most old_d.
|
|
|
|
Examples:
|
|
>>> priority_queue_test = PriorityQueue()
|
|
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
|
|
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
|
|
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
|
|
>>> priority_queue_test.decrease_key((10, 'A'), 5)
|
|
>>> priority_queue_test.array
|
|
[(5, 'A'), (15, 'B')]
|
|
"""
|
|
idx = self.pos[tup[1]]
|
|
# assuming the new_d is at most old_d
|
|
self.array[idx] = (new_d, tup[1])
|
|
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
|
|
self.swap(idx, self.par(idx))
|
|
idx = self.par(idx)
|
|
|
|
|
|
class Graph:
|
|
def __init__(self, num):
|
|
"""
|
|
Graph class constructor
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(1)
|
|
>>> graph_test.num_nodes
|
|
1
|
|
>>> graph_test.dist
|
|
[0]
|
|
>>> graph_test.par
|
|
[-1]
|
|
>>> graph_test.adjList
|
|
{}
|
|
"""
|
|
self.adjList = {} # To store graph: u -> (v,w)
|
|
self.num_nodes = num # Number of nodes in graph
|
|
# To store the distance from source vertex
|
|
self.dist = [0] * self.num_nodes
|
|
self.par = [-1] * self.num_nodes # To store the path
|
|
|
|
def add_edge(self, u, v, w):
|
|
"""
|
|
Add edge going from node u to v and v to u with weight w: u (w)-> v, v (w) -> u
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(1)
|
|
>>> graph_test.add_edge(1, 2, 1)
|
|
>>> graph_test.add_edge(2, 3, 2)
|
|
>>> graph_test.adjList
|
|
{1: [(2, 1)], 2: [(1, 1), (3, 2)], 3: [(2, 2)]}
|
|
"""
|
|
# Check if u already in graph
|
|
if u in self.adjList:
|
|
self.adjList[u].append((v, w))
|
|
else:
|
|
self.adjList[u] = [(v, w)]
|
|
|
|
# Assuming undirected graph
|
|
if v in self.adjList:
|
|
self.adjList[v].append((u, w))
|
|
else:
|
|
self.adjList[v] = [(u, w)]
|
|
|
|
def show_graph(self):
|
|
"""
|
|
Show the graph: u -> v(w)
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(1)
|
|
>>> graph_test.add_edge(1, 2, 1)
|
|
>>> graph_test.show_graph()
|
|
1 -> 2(1)
|
|
2 -> 1(1)
|
|
>>> graph_test.add_edge(2, 3, 2)
|
|
>>> graph_test.show_graph()
|
|
1 -> 2(1)
|
|
2 -> 1(1) -> 3(2)
|
|
3 -> 2(2)
|
|
"""
|
|
for u in self.adjList:
|
|
print(u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]))
|
|
|
|
def dijkstra(self, src):
|
|
"""
|
|
Dijkstra algorithm
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(3)
|
|
>>> graph_test.add_edge(0, 1, 2)
|
|
>>> graph_test.add_edge(1, 2, 2)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 2
|
|
Node 2 has distance: 4
|
|
>>> graph_test.dist
|
|
[0, 2, 4]
|
|
|
|
>>> graph_test = Graph(2)
|
|
>>> graph_test.add_edge(0, 1, 2)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 2
|
|
>>> graph_test.dist
|
|
[0, 2]
|
|
|
|
>>> graph_test = Graph(3)
|
|
>>> graph_test.add_edge(0, 1, 2)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 2
|
|
Node 2 has distance: 0
|
|
>>> graph_test.dist
|
|
[0, 2, 0]
|
|
|
|
>>> graph_test = Graph(3)
|
|
>>> graph_test.add_edge(0, 1, 2)
|
|
>>> graph_test.add_edge(1, 2, 2)
|
|
>>> graph_test.add_edge(0, 2, 1)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 2
|
|
Node 2 has distance: 1
|
|
>>> graph_test.dist
|
|
[0, 2, 1]
|
|
|
|
>>> graph_test = Graph(4)
|
|
>>> graph_test.add_edge(0, 1, 4)
|
|
>>> graph_test.add_edge(1, 2, 2)
|
|
>>> graph_test.add_edge(2, 3, 1)
|
|
>>> graph_test.add_edge(0, 2, 3)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 4
|
|
Node 2 has distance: 3
|
|
Node 3 has distance: 4
|
|
>>> graph_test.dist
|
|
[0, 4, 3, 4]
|
|
|
|
>>> graph_test = Graph(4)
|
|
>>> graph_test.add_edge(0, 1, 4)
|
|
>>> graph_test.add_edge(1, 2, 2)
|
|
>>> graph_test.add_edge(2, 3, 1)
|
|
>>> graph_test.add_edge(0, 2, 7)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 4
|
|
Node 2 has distance: 6
|
|
Node 3 has distance: 7
|
|
>>> graph_test.dist
|
|
[0, 4, 6, 7]
|
|
"""
|
|
# Flush old junk values in par[]
|
|
self.par = [-1] * self.num_nodes
|
|
# src is the source node
|
|
self.dist[src] = 0
|
|
q = PriorityQueue()
|
|
q.insert((0, src)) # (dist from src, node)
|
|
for u in self.adjList:
|
|
if u != src:
|
|
self.dist[u] = sys.maxsize # Infinity
|
|
self.par[u] = -1
|
|
|
|
while not q.is_empty():
|
|
u = q.extract_min() # Returns node with the min dist from source
|
|
# Update the distance of all the neighbours of u and
|
|
# if their prev dist was INFINITY then push them in Q
|
|
for v, w in self.adjList[u]:
|
|
new_dist = self.dist[u] + w
|
|
if self.dist[v] > new_dist:
|
|
if self.dist[v] == sys.maxsize:
|
|
q.insert((new_dist, v))
|
|
else:
|
|
q.decrease_key((self.dist[v], v), new_dist)
|
|
self.dist[v] = new_dist
|
|
self.par[v] = u
|
|
|
|
# Show the shortest distances from src
|
|
self.show_distances(src)
|
|
|
|
def show_distances(self, src):
|
|
"""
|
|
Show the distances from src to all other nodes in a graph
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(1)
|
|
>>> graph_test.show_distances(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
"""
|
|
print(f"Distance from node: {src}")
|
|
for u in range(self.num_nodes):
|
|
print(f"Node {u} has distance: {self.dist[u]}")
|
|
|
|
def show_path(self, src, dest):
|
|
"""
|
|
Shows the shortest path from src to dest.
|
|
WARNING: Use it *after* calling dijkstra.
|
|
|
|
Examples:
|
|
>>> graph_test = Graph(4)
|
|
>>> graph_test.add_edge(0, 1, 1)
|
|
>>> graph_test.add_edge(1, 2, 2)
|
|
>>> graph_test.add_edge(2, 3, 3)
|
|
>>> graph_test.dijkstra(0)
|
|
Distance from node: 0
|
|
Node 0 has distance: 0
|
|
Node 1 has distance: 1
|
|
Node 2 has distance: 3
|
|
Node 3 has distance: 6
|
|
>>> graph_test.show_path(0, 3) # doctest: +NORMALIZE_WHITESPACE
|
|
----Path to reach 3 from 0----
|
|
0 -> 1 -> 2 -> 3
|
|
Total cost of path: 6
|
|
"""
|
|
path = []
|
|
cost = 0
|
|
temp = dest
|
|
# Backtracking from dest to src
|
|
while self.par[temp] != -1:
|
|
path.append(temp)
|
|
if temp != src:
|
|
for v, w in self.adjList[temp]:
|
|
if v == self.par[temp]:
|
|
cost += w
|
|
break
|
|
temp = self.par[temp]
|
|
path.append(src)
|
|
path.reverse()
|
|
|
|
print(f"----Path to reach {dest} from {src}----")
|
|
for u in path:
|
|
print(f"{u}", end=" ")
|
|
if u != dest:
|
|
print("-> ", end="")
|
|
|
|
print("\nTotal cost of path: ", cost)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from doctest import testmod
|
|
|
|
testmod()
|
|
graph = Graph(9)
|
|
graph.add_edge(0, 1, 4)
|
|
graph.add_edge(0, 7, 8)
|
|
graph.add_edge(1, 2, 8)
|
|
graph.add_edge(1, 7, 11)
|
|
graph.add_edge(2, 3, 7)
|
|
graph.add_edge(2, 8, 2)
|
|
graph.add_edge(2, 5, 4)
|
|
graph.add_edge(3, 4, 9)
|
|
graph.add_edge(3, 5, 14)
|
|
graph.add_edge(4, 5, 10)
|
|
graph.add_edge(5, 6, 2)
|
|
graph.add_edge(6, 7, 1)
|
|
graph.add_edge(6, 8, 6)
|
|
graph.add_edge(7, 8, 7)
|
|
graph.show_graph()
|
|
graph.dijkstra(0)
|
|
graph.show_path(0, 4)
|
|
|
|
# OUTPUT
|
|
# 0 -> 1(4) -> 7(8)
|
|
# 1 -> 0(4) -> 2(8) -> 7(11)
|
|
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
|
|
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
|
|
# 3 -> 2(7) -> 4(9) -> 5(14)
|
|
# 8 -> 2(2) -> 6(6) -> 7(7)
|
|
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
|
|
# 4 -> 3(9) -> 5(10)
|
|
# 6 -> 5(2) -> 7(1) -> 8(6)
|
|
# Distance from node: 0
|
|
# Node 0 has distance: 0
|
|
# Node 1 has distance: 4
|
|
# Node 2 has distance: 12
|
|
# Node 3 has distance: 19
|
|
# Node 4 has distance: 21
|
|
# Node 5 has distance: 11
|
|
# Node 6 has distance: 9
|
|
# Node 7 has distance: 8
|
|
# Node 8 has distance: 14
|
|
# ----Path to reach 4 from 0----
|
|
# 0 -> 7 -> 6 -> 5 -> 4
|
|
# Total cost of path: 21
|