mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
f512b4d105
* refactor: Move pascals triange to maths/ * Update xgboost_classifier.py * statsmodels is now compatible with Python 3.11 * statsmodels is now compatible with Python 3.11 * cython>=0.29.28 * cython>=0.29.28 # For statsmodels on Python 3.11 Co-authored-by: Christian Clauss <cclauss@me.com>
190 lines
6.0 KiB
Python
190 lines
6.0 KiB
Python
"""
|
|
This implementation demonstrates how to generate the elements of a Pascal's triangle.
|
|
The element havingva row index of r and column index of c can be derivedvas follows:
|
|
triangle[r][c] = triangle[r-1][c-1]+triangle[r-1][c]
|
|
|
|
A Pascal's triangle is a triangular array containing binomial coefficients.
|
|
https://en.wikipedia.org/wiki/Pascal%27s_triangle
|
|
"""
|
|
|
|
|
|
def print_pascal_triangle(num_rows: int) -> None:
|
|
"""
|
|
Print Pascal's triangle for different number of rows
|
|
>>> print_pascal_triangle(5)
|
|
1
|
|
1 1
|
|
1 2 1
|
|
1 3 3 1
|
|
1 4 6 4 1
|
|
"""
|
|
triangle = generate_pascal_triangle(num_rows)
|
|
for row_idx in range(num_rows):
|
|
# Print left spaces
|
|
for _ in range(num_rows - row_idx - 1):
|
|
print(end=" ")
|
|
# Print row values
|
|
for col_idx in range(row_idx + 1):
|
|
if col_idx != row_idx:
|
|
print(triangle[row_idx][col_idx], end=" ")
|
|
else:
|
|
print(triangle[row_idx][col_idx], end="")
|
|
print()
|
|
|
|
|
|
def generate_pascal_triangle(num_rows: int) -> list[list[int]]:
|
|
"""
|
|
Create Pascal's triangle for different number of rows
|
|
>>> generate_pascal_triangle(0)
|
|
[]
|
|
>>> generate_pascal_triangle(1)
|
|
[[1]]
|
|
>>> generate_pascal_triangle(2)
|
|
[[1], [1, 1]]
|
|
>>> generate_pascal_triangle(3)
|
|
[[1], [1, 1], [1, 2, 1]]
|
|
>>> generate_pascal_triangle(4)
|
|
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]]
|
|
>>> generate_pascal_triangle(5)
|
|
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
|
|
>>> generate_pascal_triangle(-5)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: The input value of 'num_rows' should be greater than or equal to 0
|
|
>>> generate_pascal_triangle(7.89)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: The input value of 'num_rows' should be 'int'
|
|
"""
|
|
|
|
if not isinstance(num_rows, int):
|
|
raise TypeError("The input value of 'num_rows' should be 'int'")
|
|
|
|
if num_rows == 0:
|
|
return []
|
|
elif num_rows < 0:
|
|
raise ValueError(
|
|
"The input value of 'num_rows' should be greater than or equal to 0"
|
|
)
|
|
|
|
triangle: list[list[int]] = []
|
|
for current_row_idx in range(num_rows):
|
|
current_row = populate_current_row(triangle, current_row_idx)
|
|
triangle.append(current_row)
|
|
return triangle
|
|
|
|
|
|
def populate_current_row(triangle: list[list[int]], current_row_idx: int) -> list[int]:
|
|
"""
|
|
>>> triangle = [[1]]
|
|
>>> populate_current_row(triangle, 1)
|
|
[1, 1]
|
|
"""
|
|
current_row = [-1] * (current_row_idx + 1)
|
|
# first and last elements of current row are equal to 1
|
|
current_row[0], current_row[-1] = 1, 1
|
|
for current_col_idx in range(1, current_row_idx):
|
|
calculate_current_element(
|
|
triangle, current_row, current_row_idx, current_col_idx
|
|
)
|
|
return current_row
|
|
|
|
|
|
def calculate_current_element(
|
|
triangle: list[list[int]],
|
|
current_row: list[int],
|
|
current_row_idx: int,
|
|
current_col_idx: int,
|
|
) -> None:
|
|
"""
|
|
>>> triangle = [[1], [1, 1]]
|
|
>>> current_row = [1, -1, 1]
|
|
>>> calculate_current_element(triangle, current_row, 2, 1)
|
|
>>> current_row
|
|
[1, 2, 1]
|
|
"""
|
|
above_to_left_elt = triangle[current_row_idx - 1][current_col_idx - 1]
|
|
above_to_right_elt = triangle[current_row_idx - 1][current_col_idx]
|
|
current_row[current_col_idx] = above_to_left_elt + above_to_right_elt
|
|
|
|
|
|
def generate_pascal_triangle_optimized(num_rows: int) -> list[list[int]]:
|
|
"""
|
|
This function returns a matrix representing the corresponding pascal's triangle
|
|
according to the given input of number of rows of Pascal's triangle to be generated.
|
|
It reduces the operations done to generate a row by half
|
|
by eliminating redundant calculations.
|
|
|
|
:param num_rows: Integer specifying the number of rows in the Pascal's triangle
|
|
:return: 2-D List (matrix) representing the Pascal's triangle
|
|
|
|
Return the Pascal's triangle of given rows
|
|
>>> generate_pascal_triangle_optimized(3)
|
|
[[1], [1, 1], [1, 2, 1]]
|
|
>>> generate_pascal_triangle_optimized(1)
|
|
[[1]]
|
|
>>> generate_pascal_triangle_optimized(0)
|
|
[]
|
|
>>> generate_pascal_triangle_optimized(-5)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: The input value of 'num_rows' should be greater than or equal to 0
|
|
>>> generate_pascal_triangle_optimized(7.89)
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: The input value of 'num_rows' should be 'int'
|
|
"""
|
|
|
|
if not isinstance(num_rows, int):
|
|
raise TypeError("The input value of 'num_rows' should be 'int'")
|
|
|
|
if num_rows == 0:
|
|
return []
|
|
elif num_rows < 0:
|
|
raise ValueError(
|
|
"The input value of 'num_rows' should be greater than or equal to 0"
|
|
)
|
|
|
|
result: list[list[int]] = [[1]]
|
|
|
|
for row_index in range(1, num_rows):
|
|
temp_row = [0] + result[-1] + [0]
|
|
row_length = row_index + 1
|
|
# Calculate the number of distinct elements in a row
|
|
distinct_elements = sum(divmod(row_length, 2))
|
|
row_first_half = [
|
|
temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1)
|
|
]
|
|
row_second_half = row_first_half[: (row_index + 1) // 2]
|
|
row_second_half.reverse()
|
|
row = row_first_half + row_second_half
|
|
result.append(row)
|
|
|
|
return result
|
|
|
|
|
|
def benchmark() -> None:
|
|
"""
|
|
Benchmark multiple functions, with three different length int values.
|
|
"""
|
|
from collections.abc import Callable
|
|
from timeit import timeit
|
|
|
|
def benchmark_a_function(func: Callable, value: int) -> None:
|
|
call = f"{func.__name__}({value})"
|
|
timing = timeit(f"__main__.{call}", setup="import __main__")
|
|
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
|
|
print(f"{call:38} -- {timing:.4f} seconds")
|
|
|
|
for value in range(15): # (1, 7, 14):
|
|
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
|
|
benchmark_a_function(func, value)
|
|
print()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
benchmark()
|