mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 17:20:16 +00:00
bf6db32ec2
* [mypy] Fix type annotations for binary tree traversals in data structures * Change variable name and update level_order_1 to use a deque Using a deque instead of a list here, because since we are removing from the beginning of the list, the deque will be more efficient. * remove duplicate function * Update data_structures/binary_tree/binary_tree_traversals.py Co-authored-by: John Law <johnlaw.po@gmail.com> * fix function name at line 137 * Update data_structures/binary_tree/binary_tree_traversals.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Update data_structures/binary_tree/binary_tree_traversals.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Remove type alias and use the new syntax * Update data_structures/binary_tree/binary_tree_traversals.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Remove prints inside functions and return lists Co-authored-by: John Law <johnlaw.po@gmail.com>
182 lines
4.7 KiB
Python
182 lines
4.7 KiB
Python
# https://en.wikipedia.org/wiki/Tree_traversal
|
|
from __future__ import annotations
|
|
|
|
from collections import deque
|
|
from dataclasses import dataclass
|
|
from typing import Any, Sequence
|
|
|
|
|
|
@dataclass
|
|
class Node:
|
|
data: int
|
|
left: Node | None = None
|
|
right: Node | None = None
|
|
|
|
|
|
def make_tree() -> Node | None:
|
|
return Node(1, Node(2, Node(4), Node(5)), Node(3))
|
|
|
|
|
|
def preorder(root: Node | None) -> list[int]:
|
|
"""
|
|
Pre-order traversal visits root node, left subtree, right subtree.
|
|
>>> preorder(make_tree())
|
|
[1, 2, 4, 5, 3]
|
|
"""
|
|
return [root.data] + preorder(root.left) + preorder(root.right) if root else []
|
|
|
|
|
|
def postorder(root: Node | None) -> list[int]:
|
|
"""
|
|
Post-order traversal visits left subtree, right subtree, root node.
|
|
>>> postorder(make_tree())
|
|
[4, 5, 2, 3, 1]
|
|
"""
|
|
return postorder(root.left) + postorder(root.right) + [root.data] if root else []
|
|
|
|
|
|
def inorder(root: Node | None) -> list[int]:
|
|
"""
|
|
In-order traversal visits left subtree, root node, right subtree.
|
|
>>> inorder(make_tree())
|
|
[4, 2, 5, 1, 3]
|
|
"""
|
|
return inorder(root.left) + [root.data] + inorder(root.right) if root else []
|
|
|
|
|
|
def height(root: Node | None) -> int:
|
|
"""
|
|
Recursive function for calculating the height of the binary tree.
|
|
>>> height(None)
|
|
0
|
|
>>> height(make_tree())
|
|
3
|
|
"""
|
|
return (max(height(root.left), height(root.right)) + 1) if root else 0
|
|
|
|
|
|
def level_order(root: Node | None) -> Sequence[Node | None]:
|
|
"""
|
|
Returns a list of nodes value from a whole binary tree in Level Order Traverse.
|
|
Level Order traverse: Visit nodes of the tree level-by-level.
|
|
"""
|
|
output: list[Any] = []
|
|
|
|
if root is None:
|
|
return output
|
|
|
|
process_queue = deque([root])
|
|
|
|
while process_queue:
|
|
node = process_queue.popleft()
|
|
output.append(node.data)
|
|
|
|
if node.left:
|
|
process_queue.append(node.left)
|
|
if node.right:
|
|
process_queue.append(node.right)
|
|
return output
|
|
|
|
|
|
def get_nodes_from_left_to_right(
|
|
root: Node | None, level: int
|
|
) -> Sequence[Node | None]:
|
|
"""
|
|
Returns a list of nodes value from a particular level:
|
|
Left to right direction of the binary tree.
|
|
"""
|
|
output: list[Any] = []
|
|
|
|
def populate_output(root: Node | None, level: int) -> None:
|
|
if not root:
|
|
return
|
|
if level == 1:
|
|
|
|
output.append(root.data)
|
|
elif level > 1:
|
|
populate_output(root.left, level - 1)
|
|
populate_output(root.right, level - 1)
|
|
|
|
populate_output(root, level)
|
|
return output
|
|
|
|
|
|
def get_nodes_from_right_to_left(
|
|
root: Node | None, level: int
|
|
) -> Sequence[Node | None]:
|
|
"""
|
|
Returns a list of nodes value from a particular level:
|
|
Right to left direction of the binary tree.
|
|
"""
|
|
output: list[Any] = []
|
|
|
|
def populate_output(root: Node | None, level: int) -> None:
|
|
if root is None:
|
|
return
|
|
if level == 1:
|
|
output.append(root.data)
|
|
elif level > 1:
|
|
populate_output(root.right, level - 1)
|
|
populate_output(root.left, level - 1)
|
|
|
|
populate_output(root, level)
|
|
return output
|
|
|
|
|
|
def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
|
|
"""
|
|
ZigZag traverse:
|
|
Returns a list of nodes value from left to right and right to left, alternatively.
|
|
"""
|
|
if root is None:
|
|
return []
|
|
|
|
output: list[Sequence[Node | None]] = []
|
|
|
|
flag = 0
|
|
height_tree = height(root)
|
|
|
|
for h in range(1, height_tree + 1):
|
|
if not flag:
|
|
output.append(get_nodes_from_left_to_right(root, h))
|
|
flag = 1
|
|
else:
|
|
output.append(get_nodes_from_right_to_left(root, h))
|
|
flag = 0
|
|
|
|
return output
|
|
|
|
|
|
def main() -> None: # Main function for testing.
|
|
"""
|
|
Create binary tree.
|
|
"""
|
|
root = make_tree()
|
|
"""
|
|
All Traversals of the binary are as follows:
|
|
"""
|
|
|
|
print(f"In-order Traversal: {inorder(root)}")
|
|
print(f"Pre-order Traversal: {preorder(root)}")
|
|
print(f"Post-order Traversal: {postorder(root)}", "\n")
|
|
|
|
print(f"Height of Tree: {height(root)}", "\n")
|
|
|
|
print("Complete Level Order Traversal: ")
|
|
print(level_order(root), "\n")
|
|
|
|
print("Level-wise order Traversal: ")
|
|
|
|
for level in range(1, height(root) + 1):
|
|
print(f"Level {level}:", get_nodes_from_left_to_right(root, level=level))
|
|
|
|
print("\nZigZag order Traversal: ")
|
|
print(zigzag(root))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
main()
|