mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
eab6b70e0a
* DPLL algorithm * Corrections complete * Formatting * Codespell hook * Corrections part 2 * Corrections v2 * Corrections v3 * Update and rename dpll.py to davis–putnam–logemann–loveland.py Co-authored-by: Christian Clauss <cclauss@me.com>
358 lines
11 KiB
Python
358 lines
11 KiB
Python
#!/usr/bin/env python3
|
||
|
||
"""
|
||
Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based
|
||
search algorithm for deciding the satisfiability of propositional logic formulae in
|
||
conjunctive normal form, i.e, for solving the Conjunctive Normal Form SATisfiability
|
||
(CNF-SAT) problem.
|
||
|
||
For more information about the algorithm: https://en.wikipedia.org/wiki/DPLL_algorithm
|
||
"""
|
||
|
||
import random
|
||
from typing import Dict, List
|
||
|
||
|
||
class Clause:
|
||
"""
|
||
A clause represented in Conjunctive Normal Form.
|
||
A clause is a set of literals, either complemented or otherwise.
|
||
For example:
|
||
{A1, A2, A3'} is the clause (A1 v A2 v A3')
|
||
{A5', A2', A1} is the clause (A5' v A2' v A1)
|
||
|
||
Create model
|
||
>>> clause = Clause(["A1", "A2'", "A3"])
|
||
>>> clause.evaluate({"A1": True})
|
||
True
|
||
"""
|
||
|
||
def __init__(self, literals: List[int]) -> None:
|
||
"""
|
||
Represent the literals and an assignment in a clause."
|
||
"""
|
||
# Assign all literals to None initially
|
||
self.literals = {literal: None for literal in literals}
|
||
|
||
def __str__(self) -> str:
|
||
"""
|
||
To print a clause as in Conjunctive Normal Form.
|
||
>>> str(Clause(["A1", "A2'", "A3"]))
|
||
"{A1 , A2' , A3}"
|
||
"""
|
||
return "{" + " , ".join(self.literals) + "}"
|
||
|
||
def __len__(self) -> int:
|
||
"""
|
||
To print a clause as in Conjunctive Normal Form.
|
||
>>> len(Clause([]))
|
||
0
|
||
>>> len(Clause(["A1", "A2'", "A3"]))
|
||
3
|
||
"""
|
||
return len(self.literals)
|
||
|
||
def assign(self, model: Dict[str, bool]) -> None:
|
||
"""
|
||
Assign values to literals of the clause as given by model.
|
||
"""
|
||
for literal in self.literals:
|
||
symbol = literal[:2]
|
||
if symbol in model:
|
||
value = model[symbol]
|
||
else:
|
||
continue
|
||
if value is not None:
|
||
# Complement assignment if literal is in complemented form
|
||
if literal.endswith("'"):
|
||
value = not value
|
||
self.literals[literal] = value
|
||
|
||
def evaluate(self, model: Dict[str, bool]) -> bool:
|
||
"""
|
||
Evaluates the clause with the assignments in model.
|
||
This has the following steps:
|
||
1. Return True if both a literal and its complement exist in the clause.
|
||
2. Return True if a single literal has the assignment True.
|
||
3. Return None(unable to complete evaluation) if a literal has no assignment.
|
||
4. Compute disjunction of all values assigned in clause.
|
||
"""
|
||
for literal in self.literals:
|
||
symbol = literal.rstrip("'") if literal.endswith("'") else literal + "'"
|
||
if symbol in self.literals:
|
||
return True
|
||
|
||
self.assign(model)
|
||
for value in self.literals.values():
|
||
if value in (True, None):
|
||
return value
|
||
return any(self.literals.values())
|
||
|
||
|
||
class Formula:
|
||
"""
|
||
A formula represented in Conjunctive Normal Form.
|
||
A formula is a set of clauses.
|
||
For example,
|
||
{{A1, A2, A3'}, {A5', A2', A1}} is ((A1 v A2 v A3') and (A5' v A2' v A1))
|
||
"""
|
||
|
||
def __init__(self, clauses: List[Clause]) -> None:
|
||
"""
|
||
Represent the number of clauses and the clauses themselves.
|
||
"""
|
||
self.clauses = list(clauses)
|
||
|
||
def __str__(self) -> str:
|
||
"""
|
||
To print a formula as in Conjunctive Normal Form.
|
||
str(Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])]))
|
||
"{{A1 , A2' , A3} , {A5' , A2' , A1}}"
|
||
"""
|
||
return "{" + " , ".join(str(clause) for clause in self.clauses) + "}"
|
||
|
||
|
||
def generate_clause() -> Clause:
|
||
"""
|
||
Randomly generate a clause.
|
||
All literals have the name Ax, where x is an integer from 1 to 5.
|
||
"""
|
||
literals = []
|
||
no_of_literals = random.randint(1, 5)
|
||
base_var = "A"
|
||
i = 0
|
||
while i < no_of_literals:
|
||
var_no = random.randint(1, 5)
|
||
var_name = base_var + str(var_no)
|
||
var_complement = random.randint(0, 1)
|
||
if var_complement == 1:
|
||
var_name += "'"
|
||
if var_name in literals:
|
||
i -= 1
|
||
else:
|
||
literals.append(var_name)
|
||
i += 1
|
||
return Clause(literals)
|
||
|
||
|
||
def generate_formula() -> Formula:
|
||
"""
|
||
Randomly generate a formula.
|
||
"""
|
||
clauses = set()
|
||
no_of_clauses = random.randint(1, 10)
|
||
while len(clauses) < no_of_clauses:
|
||
clauses.add(generate_clause())
|
||
return Formula(set(clauses))
|
||
|
||
|
||
def generate_parameters(formula: Formula) -> (List[Clause], List[str]):
|
||
"""
|
||
Return the clauses and symbols from a formula.
|
||
A symbol is the uncomplemented form of a literal.
|
||
For example,
|
||
Symbol of A3 is A3.
|
||
Symbol of A5' is A5.
|
||
|
||
>>> formula = Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])])
|
||
>>> clauses, symbols = generate_parameters(formula)
|
||
>>> clauses_list = [str(i) for i in clauses]
|
||
>>> clauses_list
|
||
["{A1 , A2' , A3}", "{A5' , A2' , A1}"]
|
||
>>> symbols
|
||
['A1', 'A2', 'A3', 'A5']
|
||
"""
|
||
clauses = formula.clauses
|
||
symbols_set = []
|
||
for clause in formula.clauses:
|
||
for literal in clause.literals:
|
||
symbol = literal[:2]
|
||
if symbol not in symbols_set:
|
||
symbols_set.append(symbol)
|
||
return clauses, symbols_set
|
||
|
||
|
||
def find_pure_symbols(
|
||
clauses: List[Clause], symbols: List[str], model: Dict[str, bool]
|
||
) -> (List[str], Dict[str, bool]):
|
||
"""
|
||
Return pure symbols and their values to satisfy clause.
|
||
Pure symbols are symbols in a formula that exist only
|
||
in one form, either complemented or otherwise.
|
||
For example,
|
||
{ { A4 , A3 , A5' , A1 , A3' } , { A4 } , { A3 } } has
|
||
pure symbols A4, A5' and A1.
|
||
This has the following steps:
|
||
1. Ignore clauses that have already evaluated to be True.
|
||
2. Find symbols that occur only in one form in the rest of the clauses.
|
||
3. Assign value True or False depending on whether the symbols occurs
|
||
in normal or complemented form respectively.
|
||
|
||
>>> formula = Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])])
|
||
>>> clauses, symbols = generate_parameters(formula)
|
||
|
||
>>> pure_symbols, values = find_pure_symbols(clauses, symbols, {})
|
||
>>> pure_symbols
|
||
['A1', 'A2', 'A3', 'A5']
|
||
>>> values
|
||
{'A1': True, 'A2': False, 'A3': True, 'A5': False}
|
||
"""
|
||
pure_symbols = []
|
||
assignment = dict()
|
||
literals = []
|
||
|
||
for clause in clauses:
|
||
if clause.evaluate(model) is True:
|
||
continue
|
||
for literal in clause.literals:
|
||
literals.append(literal)
|
||
|
||
for s in symbols:
|
||
sym = s + "'"
|
||
if (s in literals and sym not in literals) or (
|
||
s not in literals and sym in literals
|
||
):
|
||
pure_symbols.append(s)
|
||
for p in pure_symbols:
|
||
assignment[p] = None
|
||
for s in pure_symbols:
|
||
sym = s + "'"
|
||
if s in literals:
|
||
assignment[s] = True
|
||
elif sym in literals:
|
||
assignment[s] = False
|
||
return pure_symbols, assignment
|
||
|
||
|
||
def find_unit_clauses(
|
||
clauses: List[Clause], model: Dict[str, bool]
|
||
) -> (List[str], Dict[str, bool]):
|
||
"""
|
||
Returns the unit symbols and their values to satisfy clause.
|
||
Unit symbols are symbols in a formula that are:
|
||
- Either the only symbol in a clause
|
||
- Or all other literals in that clause have been assigned False
|
||
This has the following steps:
|
||
1. Find symbols that are the only occurrences in a clause.
|
||
2. Find symbols in a clause where all other literals are assigned False.
|
||
3. Assign True or False depending on whether the symbols occurs in
|
||
normal or complemented form respectively.
|
||
|
||
>>> clause1 = Clause(["A4", "A3", "A5'", "A1", "A3'"])
|
||
>>> clause2 = Clause(["A4"])
|
||
>>> clause3 = Clause(["A3"])
|
||
>>> clauses, symbols = generate_parameters(Formula([clause1, clause2, clause3]))
|
||
|
||
>>> unit_clauses, values = find_unit_clauses(clauses, {})
|
||
>>> unit_clauses
|
||
['A4', 'A3']
|
||
>>> values
|
||
{'A4': True, 'A3': True}
|
||
"""
|
||
unit_symbols = []
|
||
for clause in clauses:
|
||
if len(clause) == 1:
|
||
unit_symbols.append(list(clause.literals.keys())[0])
|
||
else:
|
||
Fcount, Ncount = 0, 0
|
||
for literal, value in clause.literals.items():
|
||
if value is False:
|
||
Fcount += 1
|
||
elif value is None:
|
||
sym = literal
|
||
Ncount += 1
|
||
if Fcount == len(clause) - 1 and Ncount == 1:
|
||
unit_symbols.append(sym)
|
||
assignment = dict()
|
||
for i in unit_symbols:
|
||
symbol = i[:2]
|
||
assignment[symbol] = len(i) == 2
|
||
unit_symbols = [i[:2] for i in unit_symbols]
|
||
|
||
return unit_symbols, assignment
|
||
|
||
|
||
def dpll_algorithm(
|
||
clauses: List[Clause], symbols: List[str], model: Dict[str, bool]
|
||
) -> (bool, Dict[str, bool]):
|
||
"""
|
||
Returns the model if the formula is satisfiable, else None
|
||
This has the following steps:
|
||
1. If every clause in clauses is True, return True.
|
||
2. If some clause in clauses is False, return False.
|
||
3. Find pure symbols.
|
||
4. Find unit symbols.
|
||
|
||
>>> formula = Formula([Clause(["A4", "A3", "A5'", "A1", "A3'"]), Clause(["A4"])])
|
||
>>> clauses, symbols = generate_parameters(formula)
|
||
|
||
>>> soln, model = dpll_algorithm(clauses, symbols, {})
|
||
>>> soln
|
||
True
|
||
>>> model
|
||
{'A4': True}
|
||
"""
|
||
check_clause_all_true = True
|
||
for clause in clauses:
|
||
clause_check = clause.evaluate(model)
|
||
if clause_check is False:
|
||
return False, None
|
||
elif clause_check is None:
|
||
check_clause_all_true = False
|
||
continue
|
||
|
||
if check_clause_all_true:
|
||
return True, model
|
||
|
||
try:
|
||
pure_symbols, assignment = find_pure_symbols(clauses, symbols, model)
|
||
except RecursionError:
|
||
print("raises a RecursionError and is")
|
||
return None, {}
|
||
P = None
|
||
if len(pure_symbols) > 0:
|
||
P, value = pure_symbols[0], assignment[pure_symbols[0]]
|
||
|
||
if P:
|
||
tmp_model = model
|
||
tmp_model[P] = value
|
||
tmp_symbols = [i for i in symbols]
|
||
if P in tmp_symbols:
|
||
tmp_symbols.remove(P)
|
||
return dpll_algorithm(clauses, tmp_symbols, tmp_model)
|
||
|
||
unit_symbols, assignment = find_unit_clauses(clauses, model)
|
||
P = None
|
||
if len(unit_symbols) > 0:
|
||
P, value = unit_symbols[0], assignment[unit_symbols[0]]
|
||
if P:
|
||
tmp_model = model
|
||
tmp_model[P] = value
|
||
tmp_symbols = [i for i in symbols]
|
||
if P in tmp_symbols:
|
||
tmp_symbols.remove(P)
|
||
return dpll_algorithm(clauses, tmp_symbols, tmp_model)
|
||
P = symbols[0]
|
||
rest = symbols[1:]
|
||
tmp1, tmp2 = model, model
|
||
tmp1[P], tmp2[P] = True, False
|
||
|
||
return dpll_algorithm(clauses, rest, tmp1) or dpll_algorithm(clauses, rest, tmp2)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import doctest
|
||
|
||
doctest.testmod()
|
||
|
||
formula = generate_formula()
|
||
print(f"The formula {formula} is", end=" ")
|
||
|
||
clauses, symbols = generate_parameters(formula)
|
||
solution, model = dpll_algorithm(clauses, symbols, {})
|
||
|
||
if solution:
|
||
print(f"satisfiable with the assignment {model}.")
|
||
else:
|
||
print("not satisfiable.")
|