Python/project_euler/problem_43/sol1.py
Kushagra Bansal 456893cb5f
Created problem_43 in project_euler (#2340)
* Create __init__.py

* Add files via upload

* Update sol1.py

* Lose a list()

Co-authored-by: Christian Clauss <cclauss@me.com>
2020-08-20 17:02:14 +02:00

59 lines
1.6 KiB
Python

"""
The number, 1406357289, is a 0 to 9 pandigital number because it is made up of
each of the digits 0 to 9 in some order, but it also has a rather interesting
sub-string divisibility property.
Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note
the following:
d2d3d4=406 is divisible by 2
d3d4d5=063 is divisible by 3
d4d5d6=635 is divisible by 5
d5d6d7=357 is divisible by 7
d6d7d8=572 is divisible by 11
d7d8d9=728 is divisible by 13
d8d9d10=289 is divisible by 17
Find the sum of all 0 to 9 pandigital numbers with this property.
"""
from itertools import permutations
def is_substring_divisible(num: tuple) -> bool:
"""
Returns True if the pandigital number passes
all the divisibility tests.
>>> is_substring_divisible((0, 1, 2, 4, 6, 5, 7, 3, 8, 9))
False
>>> is_substring_divisible((5, 1, 2, 4, 6, 0, 7, 8, 3, 9))
False
>>> is_substring_divisible((1, 4, 0, 6, 3, 5, 7, 2, 8, 9))
True
"""
tests = [2, 3, 5, 7, 11, 13, 17]
for i, test in enumerate(tests):
if (num[i + 1] * 100 + num[i + 2] * 10 + num[i + 3]) % test != 0:
return False
return True
def compute_sum(n: int = 10) -> int:
"""
Returns the sum of all pandigital numbers which pass the
divisiility tests.
>>> compute_sum(10)
16695334890
"""
list_nums = [
int("".join(map(str, num)))
for num in permutations(range(n))
if is_substring_divisible(num)
]
return sum(list_nums)
if __name__ == "__main__":
print(f"{compute_sum(10) = }")