mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
4b79d771cd
* Add more ruff rules * Add more ruff rules * pre-commit: Update ruff v0.0.269 -> v0.0.270 * Apply suggestions from code review * Fix doctest * Fix doctest (ignore whitespace) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
152 lines
5.0 KiB
Python
152 lines
5.0 KiB
Python
"""
|
|
Given weights and values of n items, put these items in a knapsack of
|
|
capacity W to get the maximum total value in the knapsack.
|
|
|
|
Note that only the integer weights 0-1 knapsack problem is solvable
|
|
using dynamic programming.
|
|
"""
|
|
|
|
|
|
def mf_knapsack(i, wt, val, j):
|
|
"""
|
|
This code involves the concept of memory functions. Here we solve the subproblems
|
|
which are needed unlike the below example
|
|
F is a 2D array with -1s filled up
|
|
"""
|
|
global f # a global dp table for knapsack
|
|
if f[i][j] < 0:
|
|
if j < wt[i - 1]:
|
|
val = mf_knapsack(i - 1, wt, val, j)
|
|
else:
|
|
val = max(
|
|
mf_knapsack(i - 1, wt, val, j),
|
|
mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1],
|
|
)
|
|
f[i][j] = val
|
|
return f[i][j]
|
|
|
|
|
|
def knapsack(w, wt, val, n):
|
|
dp = [[0] * (w + 1) for _ in range(n + 1)]
|
|
|
|
for i in range(1, n + 1):
|
|
for w_ in range(1, w + 1):
|
|
if wt[i - 1] <= w_:
|
|
dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_])
|
|
else:
|
|
dp[i][w_] = dp[i - 1][w_]
|
|
|
|
return dp[n][w_], dp
|
|
|
|
|
|
def knapsack_with_example_solution(w: int, wt: list, val: list):
|
|
"""
|
|
Solves the integer weights knapsack problem returns one of
|
|
the several possible optimal subsets.
|
|
|
|
Parameters
|
|
---------
|
|
|
|
W: int, the total maximum weight for the given knapsack problem.
|
|
wt: list, the vector of weights for all items where wt[i] is the weight
|
|
of the i-th item.
|
|
val: list, the vector of values for all items where val[i] is the value
|
|
of the i-th item
|
|
|
|
Returns
|
|
-------
|
|
optimal_val: float, the optimal value for the given knapsack problem
|
|
example_optional_set: set, the indices of one of the optimal subsets
|
|
which gave rise to the optimal value.
|
|
|
|
Examples
|
|
-------
|
|
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
|
|
(142, {2, 3, 4})
|
|
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
|
|
(8, {3, 4})
|
|
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: The number of weights must be the same as the number of values.
|
|
But got 4 weights and 3 values
|
|
"""
|
|
if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):
|
|
raise ValueError(
|
|
"Both the weights and values vectors must be either lists or tuples"
|
|
)
|
|
|
|
num_items = len(wt)
|
|
if num_items != len(val):
|
|
msg = (
|
|
"The number of weights must be the same as the number of values.\n"
|
|
f"But got {num_items} weights and {len(val)} values"
|
|
)
|
|
raise ValueError(msg)
|
|
for i in range(num_items):
|
|
if not isinstance(wt[i], int):
|
|
msg = (
|
|
"All weights must be integers but got weight of "
|
|
f"type {type(wt[i])} at index {i}"
|
|
)
|
|
raise TypeError(msg)
|
|
|
|
optimal_val, dp_table = knapsack(w, wt, val, num_items)
|
|
example_optional_set: set = set()
|
|
_construct_solution(dp_table, wt, num_items, w, example_optional_set)
|
|
|
|
return optimal_val, example_optional_set
|
|
|
|
|
|
def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set):
|
|
"""
|
|
Recursively reconstructs one of the optimal subsets given
|
|
a filled DP table and the vector of weights
|
|
|
|
Parameters
|
|
---------
|
|
|
|
dp: list of list, the table of a solved integer weight dynamic programming problem
|
|
|
|
wt: list or tuple, the vector of weights of the items
|
|
i: int, the index of the item under consideration
|
|
j: int, the current possible maximum weight
|
|
optimal_set: set, the optimal subset so far. This gets modified by the function.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
|
|
"""
|
|
# for the current item i at a maximum weight j to be part of an optimal subset,
|
|
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
|
|
# where i - 1 means considering only the previous items at the given maximum weight
|
|
if i > 0 and j > 0:
|
|
if dp[i - 1][j] == dp[i][j]:
|
|
_construct_solution(dp, wt, i - 1, j, optimal_set)
|
|
else:
|
|
optimal_set.add(i)
|
|
_construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
Adding test case for knapsack
|
|
"""
|
|
val = [3, 2, 4, 4]
|
|
wt = [4, 3, 2, 3]
|
|
n = 4
|
|
w = 6
|
|
f = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
|
|
optimal_solution, _ = knapsack(w, wt, val, n)
|
|
print(optimal_solution)
|
|
print(mf_knapsack(n, wt, val, w)) # switched the n and w
|
|
|
|
# testing the dynamic programming problem with example
|
|
# the optimal subset for the above example are items 3 and 4
|
|
optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)
|
|
assert optimal_solution == 8
|
|
assert optimal_subset == {3, 4}
|
|
print("optimal_value = ", optimal_solution)
|
|
print("An optimal subset corresponding to the optimal value", optimal_subset)
|