mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 09:10:16 +00:00
24d3cf8244
* The black formatter is no longer beta * pre-commit autoupdate * pre-commit autoupdate * Remove project_euler/problem_145 which is killing our CI tests * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
# https://en.wikipedia.org/wiki/Coulomb%27s_law
|
||
|
||
from __future__ import annotations
|
||
|
||
COULOMBS_CONSTANT = 8.988e9 # units = N * m^s * C^-2
|
||
|
||
|
||
def couloumbs_law(
|
||
force: float, charge1: float, charge2: float, distance: float
|
||
) -> dict[str, float]:
|
||
|
||
"""
|
||
Apply Coulomb's Law on any three given values. These can be force, charge1,
|
||
charge2, or distance, and then in a Python dict return name/value pair of
|
||
the zero value.
|
||
|
||
Coulomb's Law states that the magnitude of the electrostatic force of
|
||
attraction or repulsion between two point charges is directly proportional
|
||
to the product of the magnitudes of charges and inversely proportional to
|
||
the square of the distance between them.
|
||
|
||
Reference
|
||
----------
|
||
Coulomb (1785) "Premier mémoire sur l’électricité et le magnétisme,"
|
||
Histoire de l’Académie Royale des Sciences, pp. 569–577.
|
||
|
||
Parameters
|
||
----------
|
||
force : float with units in Newtons
|
||
|
||
charge1 : float with units in Coulombs
|
||
|
||
charge2 : float with units in Coulombs
|
||
|
||
distance : float with units in meters
|
||
|
||
Returns
|
||
-------
|
||
result : dict name/value pair of the zero value
|
||
|
||
>>> couloumbs_law(force=0, charge1=3, charge2=5, distance=2000)
|
||
{'force': 33705.0}
|
||
|
||
>>> couloumbs_law(force=10, charge1=3, charge2=5, distance=0)
|
||
{'distance': 116112.01488218177}
|
||
|
||
>>> couloumbs_law(force=10, charge1=0, charge2=5, distance=2000)
|
||
{'charge1': 0.0008900756564307966}
|
||
|
||
>>> couloumbs_law(force=0, charge1=0, charge2=5, distance=2000)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: One and only one argument must be 0
|
||
|
||
>>> couloumbs_law(force=0, charge1=3, charge2=5, distance=-2000)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Distance cannot be negative
|
||
|
||
"""
|
||
|
||
charge_product = abs(charge1 * charge2)
|
||
|
||
if (force, charge1, charge2, distance).count(0) != 1:
|
||
raise ValueError("One and only one argument must be 0")
|
||
if distance < 0:
|
||
raise ValueError("Distance cannot be negative")
|
||
if force == 0:
|
||
force = COULOMBS_CONSTANT * charge_product / (distance**2)
|
||
return {"force": force}
|
||
elif charge1 == 0:
|
||
charge1 = abs(force) * (distance**2) / (COULOMBS_CONSTANT * charge2)
|
||
return {"charge1": charge1}
|
||
elif charge2 == 0:
|
||
charge2 = abs(force) * (distance**2) / (COULOMBS_CONSTANT * charge1)
|
||
return {"charge2": charge2}
|
||
elif distance == 0:
|
||
distance = (COULOMBS_CONSTANT * charge_product / abs(force)) ** 0.5
|
||
return {"distance": distance}
|
||
raise ValueError("Exactly one argument must be 0")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import doctest
|
||
|
||
doctest.testmod()
|