mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-05 21:35:54 +00:00
389 lines
12 KiB
Python
389 lines
12 KiB
Python
"""
|
|
Name - - LSTM - Long Short-Term Memory Network For Sequence Prediction
|
|
Goal - - Predict sequences of data
|
|
Detail: Total 3 layers neural network
|
|
* Input layer
|
|
* LSTM layer
|
|
* Output layer
|
|
Author: Shashank Tyagi
|
|
Github: LEVII007
|
|
Date: [Current Date]
|
|
"""
|
|
|
|
#### Explanation #####
|
|
# This script implements a Long Short-Term Memory (LSTM)
|
|
# network to learn and predict sequences of characters.
|
|
# It uses numpy for numerical operations and tqdm for progress visualization.
|
|
|
|
# The data is a paragraph about LSTM, converted to
|
|
# lowercase and split into characters.
|
|
# Each character is one-hot encoded for training.
|
|
|
|
# The LSTM class initializes weights and biases for the
|
|
# forget, input, candidate, and output gates.
|
|
# It also initializes weights and biases for the final output layer.
|
|
|
|
# The forward method performs forward propagation
|
|
# through the LSTM network, computing hidden and cell states.
|
|
# It uses sigmoid and tanh activation functions for the gates and cell states.
|
|
|
|
# The backward method performs backpropagation
|
|
# through time, computing gradients for the weights and biases.
|
|
# It updates the weights and biases using the
|
|
# computed gradients and the learning rate.
|
|
|
|
# The train method trains the LSTM network on
|
|
# the input data for a specified number of epochs.
|
|
# It uses one-hot encoded inputs and computes
|
|
# errors using the softmax function.
|
|
|
|
# The test method evaluates the trained LSTM
|
|
# network on the input data, computing accuracy based on predictions.
|
|
|
|
# The script initializes the LSTM network with
|
|
# specified hyperparameters and trains it on the input data.
|
|
# Finally, it tests the trained network and prints the accuracy of the predictions.
|
|
|
|
##### Imports #####
|
|
import numpy as np
|
|
from numpy.random import Generator
|
|
from tqdm import tqdm
|
|
|
|
|
|
class LSTM:
|
|
def __init__(
|
|
self, data: str, hidden_dim: int = 25, epochs: int = 10, lr: float = 0.05
|
|
) -> None:
|
|
"""
|
|
Initialize the LSTM network with the given data and hyperparameters.
|
|
|
|
:param data: The input data as a string.
|
|
:param hidden_dim: The number of hidden units in the LSTM layer.
|
|
:param epochs: The number of training epochs.
|
|
:param lr: The learning rate.
|
|
"""
|
|
self.data = data.lower()
|
|
self.hidden_dim = hidden_dim
|
|
self.epochs = epochs
|
|
self.lr = lr
|
|
|
|
self.chars = set(self.data)
|
|
self.data_size, self.char_size = len(self.data), len(self.chars)
|
|
|
|
print(f"Data size: {self.data_size}, Char Size: {self.char_size}")
|
|
|
|
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
|
|
self.idx_to_char = dict(enumerate(self.chars))
|
|
|
|
self.train_X, self.train_y = self.data[:-1], self.data[1:]
|
|
self.rng: Generator = np.random.default_rng()
|
|
|
|
self.initialize_weights()
|
|
|
|
##### Helper Functions #####
|
|
def one_hot_encode(self, char: str) -> np.ndarray:
|
|
"""
|
|
One-hot encode a character.
|
|
|
|
:param char: The character to encode.
|
|
:return: A one-hot encoded vector.
|
|
"""
|
|
vector = np.zeros((self.char_size, 1))
|
|
vector[self.char_to_idx[char]] = 1
|
|
return vector
|
|
|
|
def initialize_weights(self) -> None:
|
|
"""
|
|
Initialize the weights and biases for the LSTM network.
|
|
"""
|
|
|
|
self.wf = self.init_weights(
|
|
self.char_size + self.hidden_dim, self.hidden_dim
|
|
)
|
|
self.bf = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wi = self.init_weights(
|
|
self.char_size + self.hidden_dim, self.hidden_dim
|
|
)
|
|
self.bi = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wc = self.init_weights(
|
|
self.char_size + self.hidden_dim, self.hidden_dim
|
|
)
|
|
self.bc = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wo = self.init_weights(
|
|
self.char_size + self.hidden_dim, self.hidden_dim
|
|
)
|
|
self.bo = np.zeros((self.hidden_dim, 1))
|
|
|
|
self.wy = self.init_weights(self.hidden_dim, self.char_size)
|
|
self.by = np.zeros((self.char_size, 1))
|
|
|
|
def init_weights(
|
|
self, input_dim: int, output_dim: int
|
|
) -> np.ndarray:
|
|
"""
|
|
Initialize weights with random values.
|
|
|
|
:param input_dim: The input dimension.
|
|
:param output_dim: The output dimension.
|
|
:param rng: The random number generator.
|
|
:return: A matrix of initialized weights.
|
|
"""
|
|
return self.rng.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(
|
|
6 / (input_dim + output_dim)
|
|
)
|
|
|
|
##### Activation Functions #####
|
|
def sigmoid(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
|
|
"""
|
|
Sigmoid activation function.
|
|
|
|
:param x: The input array.
|
|
:param derivative: Whether to compute the derivative.
|
|
:return: The sigmoid activation or its derivative.
|
|
"""
|
|
if derivative:
|
|
return x * (1 - x)
|
|
return 1 / (1 + np.exp(-x))
|
|
|
|
def tanh(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
|
|
"""
|
|
Tanh activation function.
|
|
|
|
:param x: The input array.
|
|
:param derivative: Whether to compute the derivative.
|
|
:return: The tanh activation or its derivative.
|
|
"""
|
|
if derivative:
|
|
return 1 - x**2
|
|
return np.tanh(x)
|
|
|
|
def softmax(self, x: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Softmax activation function.
|
|
|
|
:param x: The input array.
|
|
:return: The softmax activation.
|
|
"""
|
|
exp_x = np.exp(x - np.max(x))
|
|
return exp_x / exp_x.sum(axis=0)
|
|
|
|
##### LSTM Network Methods #####
|
|
def reset(self) -> None:
|
|
"""
|
|
Reset the LSTM network states.
|
|
"""
|
|
self.concat_inputs = {}
|
|
|
|
self.hidden_states = {-1: np.zeros((self.hidden_dim, 1))}
|
|
self.cell_states = {-1: np.zeros((self.hidden_dim, 1))}
|
|
|
|
self.activation_outputs = {}
|
|
self.candidate_gates = {}
|
|
self.output_gates = {}
|
|
self.forget_gates = {}
|
|
self.input_gates = {}
|
|
self.outputs = {}
|
|
|
|
def forward(self, inputs: list) -> list:
|
|
"""
|
|
Perform forward propagation through the LSTM network.
|
|
|
|
:param inputs: The input data as a list of one-hot encoded vectors.
|
|
:return: The outputs of the network.
|
|
"""
|
|
self.reset()
|
|
|
|
outputs = []
|
|
for t in range(len(inputs)):
|
|
self.concat_inputs[t] = np.concatenate(
|
|
(self.hidden_states[t - 1], inputs[t])
|
|
)
|
|
|
|
self.forget_gates[t] = self.sigmoid(
|
|
np.dot(self.wf, self.concat_inputs[t]) + self.bf
|
|
)
|
|
self.input_gates[t] = self.sigmoid(
|
|
np.dot(self.wi, self.concat_inputs[t]) + self.bi
|
|
)
|
|
self.candidate_gates[t] = self.tanh(
|
|
np.dot(self.wc, self.concat_inputs[t]) + self.bc
|
|
)
|
|
self.output_gates[t] = self.sigmoid(
|
|
np.dot(self.wo, self.concat_inputs[t]) + self.bo
|
|
)
|
|
|
|
self.cell_states[t] = (
|
|
self.forget_gates[t] * self.cell_states[t - 1]
|
|
+ self.input_gates[t] * self.candidate_gates[t]
|
|
)
|
|
self.hidden_states[t] = self.output_gates[t] * self.tanh(
|
|
self.cell_states[t]
|
|
)
|
|
|
|
outputs.append(np.dot(self.wy, self.hidden_states[t]) + self.by)
|
|
|
|
return outputs
|
|
|
|
def backward(self, errors: list, inputs: list) -> None:
|
|
"""
|
|
Perform backpropagation through time to compute gradients and update weights.
|
|
|
|
:param errors: The errors at each time step.
|
|
:param inputs: The input data as a list of one-hot encoded vectors.
|
|
"""
|
|
d_wf, d_bf = 0, 0
|
|
d_wi, d_bi = 0, 0
|
|
d_wc, d_bc = 0, 0
|
|
d_wo, d_bo = 0, 0
|
|
d_wy, d_by = 0, 0
|
|
|
|
dh_next, dc_next = (
|
|
np.zeros_like(self.hidden_states[0]),
|
|
np.zeros_like(self.cell_states[0]),
|
|
)
|
|
for t in reversed(range(len(inputs))):
|
|
error = errors[t]
|
|
|
|
# Final Gate Weights and Biases Errors
|
|
d_wy += np.dot(error, self.hidden_states[t].T)
|
|
d_by += error
|
|
|
|
# Hidden State Error
|
|
d_hs = np.dot(self.wy.T, error) + dh_next
|
|
|
|
# Output Gate Weights and Biases Errors
|
|
d_o = (
|
|
self.tanh(self.cell_states[t])
|
|
* d_hs
|
|
* self.sigmoid(self.output_gates[t], derivative=True)
|
|
)
|
|
d_wo += np.dot(d_o, inputs[t].T)
|
|
d_bo += d_o
|
|
|
|
# Cell State Error
|
|
d_cs = (
|
|
self.tanh(self.tanh(self.cell_states[t]), derivative=True)
|
|
* self.output_gates[t]
|
|
* d_hs
|
|
+ dc_next
|
|
)
|
|
|
|
# Forget Gate Weights and Biases Errors
|
|
d_f = (
|
|
d_cs
|
|
* self.cell_states[t - 1]
|
|
* self.sigmoid(self.forget_gates[t], derivative=True)
|
|
)
|
|
d_wf += np.dot(d_f, inputs[t].T)
|
|
d_bf += d_f
|
|
|
|
# Input Gate Weights and Biases Errors
|
|
d_i = (
|
|
d_cs
|
|
* self.candidate_gates[t]
|
|
* self.sigmoid(self.input_gates[t], derivative=True)
|
|
)
|
|
d_wi += np.dot(d_i, inputs[t].T)
|
|
d_bi += d_i
|
|
|
|
# Candidate Gate Weights and Biases Errors
|
|
d_c = (
|
|
d_cs
|
|
* self.input_gates[t]
|
|
* self.tanh(self.candidate_gates[t], derivative=True)
|
|
)
|
|
d_wc += np.dot(d_c, inputs[t].T)
|
|
d_bc += d_c
|
|
|
|
# Concatenated Input Error (Sum of Error at Each Gate!)
|
|
d_z = (
|
|
np.dot(self.wf.T, d_f)
|
|
+ np.dot(self.wi.T, d_i)
|
|
+ np.dot(self.wc.T, d_c)
|
|
+ np.dot(self.wo.T, d_o)
|
|
)
|
|
|
|
# Error of Hidden State and Cell State at Next Time Step
|
|
dh_next = d_z[: self.hidden_dim, :]
|
|
dc_next = self.forget_gates[t] * d_cs
|
|
|
|
for d_ in (d_wf, d_bf, d_wi, d_bi, d_wc, d_bc, d_wo, d_bo, d_wy, d_by):
|
|
np.clip(d_, -1, 1, out=d_)
|
|
|
|
self.wf += d_wf * self.lr
|
|
self.bf += d_bf * self.lr
|
|
|
|
self.wi += d_wi * self.lr
|
|
self.bi += d_bi * self.lr
|
|
|
|
self.wc += d_wc * self.lr
|
|
self.bc += d_bc * self.lr
|
|
|
|
self.wo += d_wo * self.lr
|
|
self.bo += d_bo * self.lr
|
|
|
|
self.wy += d_wy * self.lr
|
|
self.by += d_by * self.lr
|
|
|
|
def train(self) -> None:
|
|
"""
|
|
Train the LSTM network on the input data.
|
|
"""
|
|
inputs = [self.one_hot_encode(char) for char in self.train_X]
|
|
|
|
for _ in tqdm(range(self.epochs)):
|
|
predictions = self.forward(inputs)
|
|
|
|
errors = []
|
|
for t in range(len(predictions)):
|
|
errors.append(-self.softmax(predictions[t]))
|
|
errors[-1][self.char_to_idx[self.train_y[t]]] += 1
|
|
|
|
self.backward(errors, self.concat_inputs)
|
|
|
|
def test(self) -> None:
|
|
accuracy = 0
|
|
probabilities = self.forward(
|
|
[self.one_hot_encode(char) for char in self.train_X]
|
|
)
|
|
|
|
output = ""
|
|
for t in range(len(self.train_y)):
|
|
probs = self.softmax(probabilities[t].reshape(-1))
|
|
prediction_index = self.rng.choice(self.char_size, p=probs)
|
|
prediction = self.idx_to_char[prediction_index]
|
|
|
|
output += prediction
|
|
|
|
if prediction == self.train_y[t]:
|
|
accuracy += 1
|
|
|
|
print(f"Ground Truth:\n{self.train_y}\n")
|
|
print(f"Predictions:\n{output}\n")
|
|
|
|
print(f"Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
data = """Long Short-Term Memory (LSTM) networks are a type
|
|
of recurrent neural network (RNN) capable of learning "
|
|
"order dependence in sequence prediction problems.
|
|
This behavior is required in complex problem domains like "
|
|
"machine translation, speech recognition, and more.
|
|
iter and Schmidhuber in 1997, and were refined and "
|
|
"popularized by many people in following work."""
|
|
|
|
lstm = LSTM(data=data, hidden_dim=25, epochs=10, lr=0.05)
|
|
|
|
##### Training #####
|
|
lstm.train()
|
|
|
|
##### Testing #####
|
|
lstm.test()
|
|
|
|
# testing can be done by uncommenting the above lines of code.
|