mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
c909da9b08
* pre-commit: Upgrade psf/black for stable style 2023 Updating https://github.com/psf/black ... updating 22.12.0 -> 23.1.0 for their `2023 stable style`. * https://github.com/psf/black/blob/main/CHANGES.md#2310 > This is the first [psf/black] release of 2023, and following our stability policy, it comes with a number of improvements to our stable style… Also, add https://github.com/tox-dev/pyproject-fmt and https://github.com/abravalheri/validate-pyproject to pre-commit. I only modified `.pre-commit-config.yaml` and all other files were modified by pre-commit.ci and psf/black. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
"""
|
|
Author : Syed Faizan ( 3rd Year IIIT Pune )
|
|
Github : faizan2700
|
|
|
|
Purpose : You have one function f(x) which takes float integer and returns
|
|
float you have to integrate the function in limits a to b.
|
|
The approximation proposed by Thomas Simpsons in 1743 is one way to calculate
|
|
integration.
|
|
|
|
( read article : https://cp-algorithms.com/num_methods/simpson-integration.html )
|
|
|
|
simpson_integration() takes function,lower_limit=a,upper_limit=b,precision and
|
|
returns the integration of function in given limit.
|
|
"""
|
|
|
|
# constants
|
|
# the more the number of steps the more accurate
|
|
N_STEPS = 1000
|
|
|
|
|
|
def f(x: float) -> float:
|
|
return x * x
|
|
|
|
|
|
"""
|
|
Summary of Simpson Approximation :
|
|
|
|
By simpsons integration :
|
|
1. integration of fxdx with limit a to b is =
|
|
f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + 2 * f(x4)..... + f(xn)
|
|
where x0 = a
|
|
xi = a + i * h
|
|
xn = b
|
|
"""
|
|
|
|
|
|
def simpson_integration(function, a: float, b: float, precision: int = 4) -> float:
|
|
"""
|
|
Args:
|
|
function : the function which's integration is desired
|
|
a : the lower limit of integration
|
|
b : upper limit of integration
|
|
precision : precision of the result,error required default is 4
|
|
|
|
Returns:
|
|
result : the value of the approximated integration of function in range a to b
|
|
|
|
Raises:
|
|
AssertionError: function is not callable
|
|
AssertionError: a is not float or integer
|
|
AssertionError: function should return float or integer
|
|
AssertionError: b is not float or integer
|
|
AssertionError: precision is not positive integer
|
|
|
|
>>> simpson_integration(lambda x : x*x,1,2,3)
|
|
2.333
|
|
|
|
>>> simpson_integration(lambda x : x*x,'wrong_input',2,3)
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: a should be float or integer your input : wrong_input
|
|
|
|
>>> simpson_integration(lambda x : x*x,1,'wrong_input',3)
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: b should be float or integer your input : wrong_input
|
|
|
|
>>> simpson_integration(lambda x : x*x,1,2,'wrong_input')
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: precision should be positive integer your input : wrong_input
|
|
>>> simpson_integration('wrong_input',2,3,4)
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: the function(object) passed should be callable your input : ...
|
|
|
|
>>> simpson_integration(lambda x : x*x,3.45,3.2,1)
|
|
-2.8
|
|
|
|
>>> simpson_integration(lambda x : x*x,3.45,3.2,0)
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: precision should be positive integer your input : 0
|
|
|
|
>>> simpson_integration(lambda x : x*x,3.45,3.2,-1)
|
|
Traceback (most recent call last):
|
|
...
|
|
AssertionError: precision should be positive integer your input : -1
|
|
|
|
"""
|
|
assert callable(
|
|
function
|
|
), f"the function(object) passed should be callable your input : {function}"
|
|
assert isinstance(a, (float, int)), f"a should be float or integer your input : {a}"
|
|
assert isinstance(function(a), (float, int)), (
|
|
"the function should return integer or float return type of your function, "
|
|
f"{type(a)}"
|
|
)
|
|
assert isinstance(b, (float, int)), f"b should be float or integer your input : {b}"
|
|
assert (
|
|
isinstance(precision, int) and precision > 0
|
|
), f"precision should be positive integer your input : {precision}"
|
|
|
|
# just applying the formula of simpson for approximate integration written in
|
|
# mentioned article in first comment of this file and above this function
|
|
|
|
h = (b - a) / N_STEPS
|
|
result = function(a) + function(b)
|
|
|
|
for i in range(1, N_STEPS):
|
|
a1 = a + h * i
|
|
result += function(a1) * (4 if i % 2 else 2)
|
|
|
|
result *= h / 3
|
|
return round(result, precision)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|