Python/machine_learning/local_weighted_learning/local_weighted_learning.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

136 lines
4.3 KiB
Python

# Required imports to run this file
import matplotlib.pyplot as plt
import numpy as np
# weighted matrix
def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) -> np.mat:
"""
Calculate the weight for every point in the
data set. It takes training_point , query_point, and tau
Here Tau is not a fixed value it can be varied depends on output.
tau --> bandwidth
xmat -->Training data
point --> the x where we want to make predictions
>>> weighted_matrix(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]), 0.6)
matrix([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
"""
# m is the number of training samples
m, n = np.shape(training_data_x)
# Initializing weights as identity matrix
weights = np.mat(np.eye(m))
# calculating weights for all training examples [x(i)'s]
for j in range(m):
diff = point - training_data_x[j]
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
return weights
def local_weight(
point: np.mat, training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
) -> np.mat:
"""
Calculate the local weights using the weight_matrix function on training data.
Return the weighted matrix.
>>> local_weight(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
matrix([[0.00873174],
[0.08272556]])
"""
weight = weighted_matrix(point, training_data_x, bandwidth)
w = (training_data_x.T * (weight * training_data_x)).I * (
training_data_x.T * weight * training_data_y.T
)
return w
def local_weight_regression(
training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
) -> np.mat:
"""
Calculate predictions for each data point on axis.
>>> local_weight_regression(np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
array([1.07173261, 1.65970737, 3.50160179])
"""
m, n = np.shape(training_data_x)
ypred = np.zeros(m)
for i, item in enumerate(training_data_x):
ypred[i] = item * local_weight(
item, training_data_x, training_data_y, bandwidth
)
return ypred
def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
"""
Function used for loading data from the seaborn splitting into x and y points
>>> pass # this function has no doctest
"""
import seaborn as sns
data = sns.load_dataset(dataset_name)
col_a = np.array(data[cola_name]) # total_bill
col_b = np.array(data[colb_name]) # tip
mcol_a = np.mat(col_a)
mcol_b = np.mat(col_b)
m = np.shape(mcol_b)[1]
one = np.ones((1, m), dtype=int)
# horizontal stacking
training_data_x = np.hstack((one.T, mcol_a.T))
return training_data_x, mcol_b, col_a, col_b
def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray:
"""
Get predictions with minimum error for each training data
>>> get_preds(np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
array([1.07173261, 1.65970737, 3.50160179])
"""
ypred = local_weight_regression(training_data_x, mcol_b, tau)
return ypred
def plot_preds(
training_data_x: np.mat,
predictions: np.ndarray,
col_x: np.ndarray,
col_y: np.ndarray,
cola_name: str,
colb_name: str,
) -> plt.plot:
"""
This function used to plot predictions and display the graph
>>> pass #this function has no doctest
"""
xsort = training_data_x.copy()
xsort.sort(axis=0)
plt.scatter(col_x, col_y, color="blue")
plt.plot(
xsort[:, 1],
predictions[training_data_x[:, 1].argsort(0)],
color="yellow",
linewidth=5,
)
plt.title("Local Weighted Regression")
plt.xlabel(cola_name)
plt.ylabel(colb_name)
plt.show()
if __name__ == "__main__":
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
predictions = get_preds(training_data_x, mcol_b, 0.5)
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")