Python/neural_network/activation_functions/swish.py
Shivansh Bhatnagar 572de4f15e
Added A General Swish Activation Function inNeural Networks (#10415)
* Added A General Swish Activation Function inNeural Networks

* Added the general swish function in the SiLU function and renamed it as swish.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: Shivansh Bhatnagar <shivansh.bhatnagar.mat22@iitbhu.ac.in>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-10-18 10:50:18 -04:00

76 lines
2.2 KiB
Python

"""
This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU)
or swish function.
* https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
* https://en.wikipedia.org/wiki/Swish_function
The function takes a vector x of K real numbers as input and returns x * sigmoid(x).
Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x).
Extensive experiments shows that Swish consistently matches or outperforms ReLU
on deep networks applied to a variety of challenging domains such as
image classification and machine translation.
This script is inspired by a corresponding research paper.
* https://arxiv.org/abs/1710.05941
* https://blog.paperspace.com/swish-activation-function/
"""
import numpy as np
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
https://en.wikipedia.org/wiki/Sigmoid_function
>>> sigmoid(np.array([-1.0, 1.0, 2.0]))
array([0.26894142, 0.73105858, 0.88079708])
"""
return 1 / (1 + np.exp(-vector))
def sigmoid_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the Sigmoid Linear Unit (SiLU) or swish function
Parameters:
vector (np.ndarray): A numpy array consisting of real values
Returns:
swish_vec (np.ndarray): The input numpy array, after applying swish
Examples:
>>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0]))
array([-0.26894142, 0.73105858, 1.76159416])
>>> sigmoid_linear_unit(np.array([-2]))
array([-0.23840584])
"""
return vector * sigmoid(vector)
def swish(vector: np.ndarray, trainable_parameter: int) -> np.ndarray:
"""
Parameters:
vector (np.ndarray): A numpy array consisting of real values
trainable_parameter: Use to implement various Swish Activation Functions
Returns:
swish_vec (np.ndarray): The input numpy array, after applying swish
Examples:
>>> swish(np.array([-1.0, 1.0, 2.0]), 2)
array([-0.11920292, 0.88079708, 1.96402758])
>>> swish(np.array([-2]), 1)
array([-0.23840584])
"""
return vector * sigmoid(trainable_parameter * vector)
if __name__ == "__main__":
import doctest
doctest.testmod()