mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
716bdeb68b
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.4.10 → v0.5.0](https://github.com/astral-sh/ruff-pre-commit/compare/v0.4.10...v0.5.0) - [github.com/pre-commit/mirrors-mypy: v1.10.0 → v1.10.1](https://github.com/pre-commit/mirrors-mypy/compare/v1.10.0...v1.10.1) * Fix ruff issues * Fix ruff issues --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
610 lines
22 KiB
Python
610 lines
22 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Author: Vikram Nithyanandam
|
|
|
|
Description:
|
|
The following implementation is a robust unweighted Graph data structure
|
|
implemented using an adjacency matrix. This vertices and edges of this graph can be
|
|
effectively initialized and modified while storing your chosen generic
|
|
value in each vertex.
|
|
|
|
Adjacency Matrix: https://mathworld.wolfram.com/AdjacencyMatrix.html
|
|
|
|
Potential Future Ideas:
|
|
- Add a flag to set edge weights on and set edge weights
|
|
- Make edge weights and vertex values customizable to store whatever the client wants
|
|
- Support multigraph functionality if the client wants it
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import random
|
|
import unittest
|
|
from pprint import pformat
|
|
from typing import Generic, TypeVar
|
|
|
|
import pytest
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
class GraphAdjacencyMatrix(Generic[T]):
|
|
def __init__(
|
|
self, vertices: list[T], edges: list[list[T]], directed: bool = True
|
|
) -> None:
|
|
"""
|
|
Parameters:
|
|
- vertices: (list[T]) The list of vertex names the client wants to
|
|
pass in. Default is empty.
|
|
- edges: (list[list[T]]) The list of edges the client wants to
|
|
pass in. Each edge is a 2-element list. Default is empty.
|
|
- directed: (bool) Indicates if graph is directed or undirected.
|
|
Default is True.
|
|
"""
|
|
self.directed = directed
|
|
self.vertex_to_index: dict[T, int] = {}
|
|
self.adj_matrix: list[list[int]] = []
|
|
|
|
# Falsey checks
|
|
edges = edges or []
|
|
vertices = vertices or []
|
|
|
|
for vertex in vertices:
|
|
self.add_vertex(vertex)
|
|
|
|
for edge in edges:
|
|
if len(edge) != 2:
|
|
msg = f"Invalid input: {edge} must have length 2."
|
|
raise ValueError(msg)
|
|
self.add_edge(edge[0], edge[1])
|
|
|
|
def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
|
|
"""
|
|
Creates an edge from source vertex to destination vertex. If any
|
|
given vertex doesn't exist or the edge already exists, a ValueError
|
|
will be thrown.
|
|
"""
|
|
if not (
|
|
self.contains_vertex(source_vertex)
|
|
and self.contains_vertex(destination_vertex)
|
|
):
|
|
msg = (
|
|
f"Incorrect input: Either {source_vertex} or "
|
|
f"{destination_vertex} does not exist"
|
|
)
|
|
raise ValueError(msg)
|
|
if self.contains_edge(source_vertex, destination_vertex):
|
|
msg = (
|
|
"Incorrect input: The edge already exists between "
|
|
f"{source_vertex} and {destination_vertex}"
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
# Get the indices of the corresponding vertices and set their edge value to 1.
|
|
u: int = self.vertex_to_index[source_vertex]
|
|
v: int = self.vertex_to_index[destination_vertex]
|
|
self.adj_matrix[u][v] = 1
|
|
if not self.directed:
|
|
self.adj_matrix[v][u] = 1
|
|
|
|
def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
|
|
"""
|
|
Removes the edge between the two vertices. If any given vertex
|
|
doesn't exist or the edge does not exist, a ValueError will be thrown.
|
|
"""
|
|
if not (
|
|
self.contains_vertex(source_vertex)
|
|
and self.contains_vertex(destination_vertex)
|
|
):
|
|
msg = (
|
|
f"Incorrect input: Either {source_vertex} or "
|
|
f"{destination_vertex} does not exist"
|
|
)
|
|
raise ValueError(msg)
|
|
if not self.contains_edge(source_vertex, destination_vertex):
|
|
msg = (
|
|
"Incorrect input: The edge does NOT exist between "
|
|
f"{source_vertex} and {destination_vertex}"
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
# Get the indices of the corresponding vertices and set their edge value to 0.
|
|
u: int = self.vertex_to_index[source_vertex]
|
|
v: int = self.vertex_to_index[destination_vertex]
|
|
self.adj_matrix[u][v] = 0
|
|
if not self.directed:
|
|
self.adj_matrix[v][u] = 0
|
|
|
|
def add_vertex(self, vertex: T) -> None:
|
|
"""
|
|
Adds a vertex to the graph. If the given vertex already exists,
|
|
a ValueError will be thrown.
|
|
"""
|
|
if self.contains_vertex(vertex):
|
|
msg = f"Incorrect input: {vertex} already exists in this graph."
|
|
raise ValueError(msg)
|
|
|
|
# build column for vertex
|
|
for row in self.adj_matrix:
|
|
row.append(0)
|
|
|
|
# build row for vertex and update other data structures
|
|
self.adj_matrix.append([0] * (len(self.adj_matrix) + 1))
|
|
self.vertex_to_index[vertex] = len(self.adj_matrix) - 1
|
|
|
|
def remove_vertex(self, vertex: T) -> None:
|
|
"""
|
|
Removes the given vertex from the graph and deletes all incoming and
|
|
outgoing edges from the given vertex as well. If the given vertex
|
|
does not exist, a ValueError will be thrown.
|
|
"""
|
|
if not self.contains_vertex(vertex):
|
|
msg = f"Incorrect input: {vertex} does not exist in this graph."
|
|
raise ValueError(msg)
|
|
|
|
# first slide up the rows by deleting the row corresponding to
|
|
# the vertex being deleted.
|
|
start_index = self.vertex_to_index[vertex]
|
|
self.adj_matrix.pop(start_index)
|
|
|
|
# next, slide the columns to the left by deleting the values in
|
|
# the column corresponding to the vertex being deleted
|
|
for lst in self.adj_matrix:
|
|
lst.pop(start_index)
|
|
|
|
# final clean up
|
|
self.vertex_to_index.pop(vertex)
|
|
|
|
# decrement indices for vertices shifted by the deleted vertex in the adj matrix
|
|
for inner_vertex in self.vertex_to_index:
|
|
if self.vertex_to_index[inner_vertex] >= start_index:
|
|
self.vertex_to_index[inner_vertex] = (
|
|
self.vertex_to_index[inner_vertex] - 1
|
|
)
|
|
|
|
def contains_vertex(self, vertex: T) -> bool:
|
|
"""
|
|
Returns True if the graph contains the vertex, False otherwise.
|
|
"""
|
|
return vertex in self.vertex_to_index
|
|
|
|
def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
|
|
"""
|
|
Returns True if the graph contains the edge from the source_vertex to the
|
|
destination_vertex, False otherwise. If any given vertex doesn't exist, a
|
|
ValueError will be thrown.
|
|
"""
|
|
if not (
|
|
self.contains_vertex(source_vertex)
|
|
and self.contains_vertex(destination_vertex)
|
|
):
|
|
msg = (
|
|
f"Incorrect input: Either {source_vertex} "
|
|
f"or {destination_vertex} does not exist."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
u = self.vertex_to_index[source_vertex]
|
|
v = self.vertex_to_index[destination_vertex]
|
|
return self.adj_matrix[u][v] == 1
|
|
|
|
def clear_graph(self) -> None:
|
|
"""
|
|
Clears all vertices and edges.
|
|
"""
|
|
self.vertex_to_index = {}
|
|
self.adj_matrix = []
|
|
|
|
def __repr__(self) -> str:
|
|
first = "Adj Matrix:\n" + pformat(self.adj_matrix)
|
|
second = "\nVertex to index mapping:\n" + pformat(self.vertex_to_index)
|
|
return first + second
|
|
|
|
|
|
class TestGraphMatrix(unittest.TestCase):
|
|
def __assert_graph_edge_exists_check(
|
|
self,
|
|
undirected_graph: GraphAdjacencyMatrix,
|
|
directed_graph: GraphAdjacencyMatrix,
|
|
edge: list[int],
|
|
) -> None:
|
|
assert undirected_graph.contains_edge(edge[0], edge[1])
|
|
assert undirected_graph.contains_edge(edge[1], edge[0])
|
|
assert directed_graph.contains_edge(edge[0], edge[1])
|
|
|
|
def __assert_graph_edge_does_not_exist_check(
|
|
self,
|
|
undirected_graph: GraphAdjacencyMatrix,
|
|
directed_graph: GraphAdjacencyMatrix,
|
|
edge: list[int],
|
|
) -> None:
|
|
assert not undirected_graph.contains_edge(edge[0], edge[1])
|
|
assert not undirected_graph.contains_edge(edge[1], edge[0])
|
|
assert not directed_graph.contains_edge(edge[0], edge[1])
|
|
|
|
def __assert_graph_vertex_exists_check(
|
|
self,
|
|
undirected_graph: GraphAdjacencyMatrix,
|
|
directed_graph: GraphAdjacencyMatrix,
|
|
vertex: int,
|
|
) -> None:
|
|
assert undirected_graph.contains_vertex(vertex)
|
|
assert directed_graph.contains_vertex(vertex)
|
|
|
|
def __assert_graph_vertex_does_not_exist_check(
|
|
self,
|
|
undirected_graph: GraphAdjacencyMatrix,
|
|
directed_graph: GraphAdjacencyMatrix,
|
|
vertex: int,
|
|
) -> None:
|
|
assert not undirected_graph.contains_vertex(vertex)
|
|
assert not directed_graph.contains_vertex(vertex)
|
|
|
|
def __generate_random_edges(
|
|
self, vertices: list[int], edge_pick_count: int
|
|
) -> list[list[int]]:
|
|
assert edge_pick_count <= len(vertices)
|
|
|
|
random_source_vertices: list[int] = random.sample(
|
|
vertices[0 : int(len(vertices) / 2)], edge_pick_count
|
|
)
|
|
random_destination_vertices: list[int] = random.sample(
|
|
vertices[int(len(vertices) / 2) :], edge_pick_count
|
|
)
|
|
random_edges: list[list[int]] = []
|
|
|
|
for source in random_source_vertices:
|
|
for dest in random_destination_vertices:
|
|
random_edges.append([source, dest])
|
|
|
|
return random_edges
|
|
|
|
def __generate_graphs(
|
|
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
|
|
) -> tuple[GraphAdjacencyMatrix, GraphAdjacencyMatrix, list[int], list[list[int]]]:
|
|
if max_val - min_val + 1 < vertex_count:
|
|
raise ValueError(
|
|
"Will result in duplicate vertices. Either increase "
|
|
"range between min_val and max_val or decrease vertex count"
|
|
)
|
|
|
|
# generate graph input
|
|
random_vertices: list[int] = random.sample(
|
|
range(min_val, max_val + 1), vertex_count
|
|
)
|
|
random_edges: list[list[int]] = self.__generate_random_edges(
|
|
random_vertices, edge_pick_count
|
|
)
|
|
|
|
# build graphs
|
|
undirected_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=random_edges, directed=False
|
|
)
|
|
directed_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=random_edges, directed=True
|
|
)
|
|
|
|
return undirected_graph, directed_graph, random_vertices, random_edges
|
|
|
|
def test_init_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
# test graph initialization with vertices and edges
|
|
for num in random_vertices:
|
|
self.__assert_graph_vertex_exists_check(
|
|
undirected_graph, directed_graph, num
|
|
)
|
|
|
|
for edge in random_edges:
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
|
|
assert not undirected_graph.directed
|
|
assert directed_graph.directed
|
|
|
|
def test_contains_vertex(self) -> None:
|
|
random_vertices: list[int] = random.sample(range(101), 20)
|
|
|
|
# Build graphs WITHOUT edges
|
|
undirected_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=False
|
|
)
|
|
directed_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=True
|
|
)
|
|
|
|
# Test contains_vertex
|
|
for num in range(101):
|
|
assert (num in random_vertices) == undirected_graph.contains_vertex(num)
|
|
assert (num in random_vertices) == directed_graph.contains_vertex(num)
|
|
|
|
def test_add_vertices(self) -> None:
|
|
random_vertices: list[int] = random.sample(range(101), 20)
|
|
|
|
# build empty graphs
|
|
undirected_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
|
|
vertices=[], edges=[], directed=False
|
|
)
|
|
directed_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
|
|
vertices=[], edges=[], directed=True
|
|
)
|
|
|
|
# run add_vertex
|
|
for num in random_vertices:
|
|
undirected_graph.add_vertex(num)
|
|
|
|
for num in random_vertices:
|
|
directed_graph.add_vertex(num)
|
|
|
|
# test add_vertex worked
|
|
for num in random_vertices:
|
|
self.__assert_graph_vertex_exists_check(
|
|
undirected_graph, directed_graph, num
|
|
)
|
|
|
|
def test_remove_vertices(self) -> None:
|
|
random_vertices: list[int] = random.sample(range(101), 20)
|
|
|
|
# build graphs WITHOUT edges
|
|
undirected_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=False
|
|
)
|
|
directed_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=True
|
|
)
|
|
|
|
# test remove_vertex worked
|
|
for num in random_vertices:
|
|
self.__assert_graph_vertex_exists_check(
|
|
undirected_graph, directed_graph, num
|
|
)
|
|
|
|
undirected_graph.remove_vertex(num)
|
|
directed_graph.remove_vertex(num)
|
|
|
|
self.__assert_graph_vertex_does_not_exist_check(
|
|
undirected_graph, directed_graph, num
|
|
)
|
|
|
|
def test_add_and_remove_vertices_repeatedly(self) -> None:
|
|
random_vertices1: list[int] = random.sample(range(51), 20)
|
|
random_vertices2: list[int] = random.sample(range(51, 101), 20)
|
|
|
|
# build graphs WITHOUT edges
|
|
undirected_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices1, edges=[], directed=False
|
|
)
|
|
directed_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices1, edges=[], directed=True
|
|
)
|
|
|
|
# test adding and removing vertices
|
|
for i, _ in enumerate(random_vertices1):
|
|
undirected_graph.add_vertex(random_vertices2[i])
|
|
directed_graph.add_vertex(random_vertices2[i])
|
|
|
|
self.__assert_graph_vertex_exists_check(
|
|
undirected_graph, directed_graph, random_vertices2[i]
|
|
)
|
|
|
|
undirected_graph.remove_vertex(random_vertices1[i])
|
|
directed_graph.remove_vertex(random_vertices1[i])
|
|
|
|
self.__assert_graph_vertex_does_not_exist_check(
|
|
undirected_graph, directed_graph, random_vertices1[i]
|
|
)
|
|
|
|
# remove all vertices
|
|
for i, _ in enumerate(random_vertices1):
|
|
undirected_graph.remove_vertex(random_vertices2[i])
|
|
directed_graph.remove_vertex(random_vertices2[i])
|
|
|
|
self.__assert_graph_vertex_does_not_exist_check(
|
|
undirected_graph, directed_graph, random_vertices2[i]
|
|
)
|
|
|
|
def test_contains_edge(self) -> None:
|
|
# generate graphs and graph input
|
|
vertex_count = 20
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(vertex_count, 0, 100, 4)
|
|
|
|
# generate all possible edges for testing
|
|
all_possible_edges: list[list[int]] = []
|
|
for i in range(vertex_count - 1):
|
|
for j in range(i + 1, vertex_count):
|
|
all_possible_edges.append([random_vertices[i], random_vertices[j]])
|
|
all_possible_edges.append([random_vertices[j], random_vertices[i]])
|
|
|
|
# test contains_edge function
|
|
for edge in all_possible_edges:
|
|
if edge in random_edges:
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
elif [edge[1], edge[0]] in random_edges:
|
|
# since this edge exists for undirected but the reverse may
|
|
# not exist for directed
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, [edge[1], edge[0]]
|
|
)
|
|
else:
|
|
self.__assert_graph_edge_does_not_exist_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
|
|
def test_add_edge(self) -> None:
|
|
# generate graph input
|
|
random_vertices: list[int] = random.sample(range(101), 15)
|
|
random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
|
|
|
|
# build graphs WITHOUT edges
|
|
undirected_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=False
|
|
)
|
|
directed_graph = GraphAdjacencyMatrix(
|
|
vertices=random_vertices, edges=[], directed=True
|
|
)
|
|
|
|
# run and test add_edge
|
|
for edge in random_edges:
|
|
undirected_graph.add_edge(edge[0], edge[1])
|
|
directed_graph.add_edge(edge[0], edge[1])
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
|
|
def test_remove_edge(self) -> None:
|
|
# generate graph input and graphs
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
# run and test remove_edge
|
|
for edge in random_edges:
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
undirected_graph.remove_edge(edge[0], edge[1])
|
|
directed_graph.remove_edge(edge[0], edge[1])
|
|
self.__assert_graph_edge_does_not_exist_check(
|
|
undirected_graph, directed_graph, edge
|
|
)
|
|
|
|
def test_add_and_remove_edges_repeatedly(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
# make some more edge options!
|
|
more_random_edges: list[list[int]] = []
|
|
|
|
while len(more_random_edges) != len(random_edges):
|
|
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
|
|
for edge in edges:
|
|
if len(more_random_edges) == len(random_edges):
|
|
break
|
|
elif edge not in more_random_edges and edge not in random_edges:
|
|
more_random_edges.append(edge)
|
|
|
|
for i, _ in enumerate(random_edges):
|
|
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
|
|
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
|
|
|
|
self.__assert_graph_edge_exists_check(
|
|
undirected_graph, directed_graph, more_random_edges[i]
|
|
)
|
|
|
|
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
|
|
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
|
|
|
|
self.__assert_graph_edge_does_not_exist_check(
|
|
undirected_graph, directed_graph, random_edges[i]
|
|
)
|
|
|
|
def test_add_vertex_exception_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
for vertex in random_vertices:
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.add_vertex(vertex)
|
|
with pytest.raises(ValueError):
|
|
directed_graph.add_vertex(vertex)
|
|
|
|
def test_remove_vertex_exception_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
for i in range(101):
|
|
if i not in random_vertices:
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.remove_vertex(i)
|
|
with pytest.raises(ValueError):
|
|
directed_graph.remove_vertex(i)
|
|
|
|
def test_add_edge_exception_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
for edge in random_edges:
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.add_edge(edge[0], edge[1])
|
|
with pytest.raises(ValueError):
|
|
directed_graph.add_edge(edge[0], edge[1])
|
|
|
|
def test_remove_edge_exception_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
more_random_edges: list[list[int]] = []
|
|
|
|
while len(more_random_edges) != len(random_edges):
|
|
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
|
|
for edge in edges:
|
|
if len(more_random_edges) == len(random_edges):
|
|
break
|
|
elif edge not in more_random_edges and edge not in random_edges:
|
|
more_random_edges.append(edge)
|
|
|
|
for edge in more_random_edges:
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.remove_edge(edge[0], edge[1])
|
|
with pytest.raises(ValueError):
|
|
directed_graph.remove_edge(edge[0], edge[1])
|
|
|
|
def test_contains_edge_exception_check(self) -> None:
|
|
(
|
|
undirected_graph,
|
|
directed_graph,
|
|
random_vertices,
|
|
random_edges,
|
|
) = self.__generate_graphs(20, 0, 100, 4)
|
|
|
|
for vertex in random_vertices:
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.contains_edge(vertex, 102)
|
|
with pytest.raises(ValueError):
|
|
directed_graph.contains_edge(vertex, 102)
|
|
|
|
with pytest.raises(ValueError):
|
|
undirected_graph.contains_edge(103, 102)
|
|
with pytest.raises(ValueError):
|
|
directed_graph.contains_edge(103, 102)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|