mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
3622e940c9
* Fix sphinx/build_docs warnings for other * Fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
368 lines
12 KiB
Python
368 lines
12 KiB
Python
#!/usr/bin/env python3
|
|
|
|
"""
|
|
Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a complete, backtracking-based
|
|
search algorithm for deciding the satisfiability of propositional logic formulae in
|
|
conjunctive normal form, i.e, for solving the Conjunctive Normal Form SATisfiability
|
|
(CNF-SAT) problem.
|
|
|
|
For more information about the algorithm: https://en.wikipedia.org/wiki/DPLL_algorithm
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import random
|
|
from collections.abc import Iterable
|
|
|
|
|
|
class Clause:
|
|
"""
|
|
| A clause represented in Conjunctive Normal Form.
|
|
| A clause is a set of literals, either complemented or otherwise.
|
|
|
|
For example:
|
|
* {A1, A2, A3'} is the clause (A1 v A2 v A3')
|
|
* {A5', A2', A1} is the clause (A5' v A2' v A1)
|
|
|
|
Create model
|
|
|
|
>>> clause = Clause(["A1", "A2'", "A3"])
|
|
>>> clause.evaluate({"A1": True})
|
|
True
|
|
"""
|
|
|
|
def __init__(self, literals: list[str]) -> None:
|
|
"""
|
|
Represent the literals and an assignment in a clause."
|
|
"""
|
|
# Assign all literals to None initially
|
|
self.literals: dict[str, bool | None] = {literal: None for literal in literals}
|
|
|
|
def __str__(self) -> str:
|
|
"""
|
|
To print a clause as in Conjunctive Normal Form.
|
|
|
|
>>> str(Clause(["A1", "A2'", "A3"]))
|
|
"{A1 , A2' , A3}"
|
|
"""
|
|
return "{" + " , ".join(self.literals) + "}"
|
|
|
|
def __len__(self) -> int:
|
|
"""
|
|
To print a clause as in Conjunctive Normal Form.
|
|
|
|
>>> len(Clause([]))
|
|
0
|
|
>>> len(Clause(["A1", "A2'", "A3"]))
|
|
3
|
|
"""
|
|
return len(self.literals)
|
|
|
|
def assign(self, model: dict[str, bool | None]) -> None:
|
|
"""
|
|
Assign values to literals of the clause as given by model.
|
|
"""
|
|
for literal in self.literals:
|
|
symbol = literal[:2]
|
|
if symbol in model:
|
|
value = model[symbol]
|
|
else:
|
|
continue
|
|
# Complement assignment if literal is in complemented form
|
|
if value is not None and literal.endswith("'"):
|
|
value = not value
|
|
self.literals[literal] = value
|
|
|
|
def evaluate(self, model: dict[str, bool | None]) -> bool | None:
|
|
"""
|
|
Evaluates the clause with the assignments in model.
|
|
|
|
This has the following steps:
|
|
1. Return ``True`` if both a literal and its complement exist in the clause.
|
|
2. Return ``True`` if a single literal has the assignment ``True``.
|
|
3. Return ``None`` (unable to complete evaluation)
|
|
if a literal has no assignment.
|
|
4. Compute disjunction of all values assigned in clause.
|
|
"""
|
|
for literal in self.literals:
|
|
symbol = literal.rstrip("'") if literal.endswith("'") else literal + "'"
|
|
if symbol in self.literals:
|
|
return True
|
|
|
|
self.assign(model)
|
|
for value in self.literals.values():
|
|
if value in (True, None):
|
|
return value
|
|
return any(self.literals.values())
|
|
|
|
|
|
class Formula:
|
|
"""
|
|
| A formula represented in Conjunctive Normal Form.
|
|
| A formula is a set of clauses.
|
|
| For example,
|
|
| {{A1, A2, A3'}, {A5', A2', A1}} is ((A1 v A2 v A3') and (A5' v A2' v A1))
|
|
"""
|
|
|
|
def __init__(self, clauses: Iterable[Clause]) -> None:
|
|
"""
|
|
Represent the number of clauses and the clauses themselves.
|
|
"""
|
|
self.clauses = list(clauses)
|
|
|
|
def __str__(self) -> str:
|
|
"""
|
|
To print a formula as in Conjunctive Normal Form.
|
|
|
|
>>> str(Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])]))
|
|
"{{A1 , A2' , A3} , {A5' , A2' , A1}}"
|
|
"""
|
|
return "{" + " , ".join(str(clause) for clause in self.clauses) + "}"
|
|
|
|
|
|
def generate_clause() -> Clause:
|
|
"""
|
|
| Randomly generate a clause.
|
|
| All literals have the name Ax, where x is an integer from ``1`` to ``5``.
|
|
"""
|
|
literals = []
|
|
no_of_literals = random.randint(1, 5)
|
|
base_var = "A"
|
|
i = 0
|
|
while i < no_of_literals:
|
|
var_no = random.randint(1, 5)
|
|
var_name = base_var + str(var_no)
|
|
var_complement = random.randint(0, 1)
|
|
if var_complement == 1:
|
|
var_name += "'"
|
|
if var_name in literals:
|
|
i -= 1
|
|
else:
|
|
literals.append(var_name)
|
|
i += 1
|
|
return Clause(literals)
|
|
|
|
|
|
def generate_formula() -> Formula:
|
|
"""
|
|
Randomly generate a formula.
|
|
"""
|
|
clauses: set[Clause] = set()
|
|
no_of_clauses = random.randint(1, 10)
|
|
while len(clauses) < no_of_clauses:
|
|
clauses.add(generate_clause())
|
|
return Formula(clauses)
|
|
|
|
|
|
def generate_parameters(formula: Formula) -> tuple[list[Clause], list[str]]:
|
|
"""
|
|
| Return the clauses and symbols from a formula.
|
|
| A symbol is the uncomplemented form of a literal.
|
|
|
|
For example,
|
|
* Symbol of A3 is A3.
|
|
* Symbol of A5' is A5.
|
|
|
|
>>> formula = Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])])
|
|
>>> clauses, symbols = generate_parameters(formula)
|
|
>>> clauses_list = [str(i) for i in clauses]
|
|
>>> clauses_list
|
|
["{A1 , A2' , A3}", "{A5' , A2' , A1}"]
|
|
>>> symbols
|
|
['A1', 'A2', 'A3', 'A5']
|
|
"""
|
|
clauses = formula.clauses
|
|
symbols_set = []
|
|
for clause in formula.clauses:
|
|
for literal in clause.literals:
|
|
symbol = literal[:2]
|
|
if symbol not in symbols_set:
|
|
symbols_set.append(symbol)
|
|
return clauses, symbols_set
|
|
|
|
|
|
def find_pure_symbols(
|
|
clauses: list[Clause], symbols: list[str], model: dict[str, bool | None]
|
|
) -> tuple[list[str], dict[str, bool | None]]:
|
|
"""
|
|
| Return pure symbols and their values to satisfy clause.
|
|
| Pure symbols are symbols in a formula that exist only in one form,
|
|
| either complemented or otherwise.
|
|
| For example,
|
|
| {{A4 , A3 , A5' , A1 , A3'} , {A4} , {A3}} has pure symbols A4, A5' and A1.
|
|
|
|
This has the following steps:
|
|
1. Ignore clauses that have already evaluated to be ``True``.
|
|
2. Find symbols that occur only in one form in the rest of the clauses.
|
|
3. Assign value ``True`` or ``False`` depending on whether the symbols occurs
|
|
in normal or complemented form respectively.
|
|
|
|
>>> formula = Formula([Clause(["A1", "A2'", "A3"]), Clause(["A5'", "A2'", "A1"])])
|
|
>>> clauses, symbols = generate_parameters(formula)
|
|
>>> pure_symbols, values = find_pure_symbols(clauses, symbols, {})
|
|
>>> pure_symbols
|
|
['A1', 'A2', 'A3', 'A5']
|
|
>>> values
|
|
{'A1': True, 'A2': False, 'A3': True, 'A5': False}
|
|
"""
|
|
pure_symbols = []
|
|
assignment: dict[str, bool | None] = {}
|
|
literals = []
|
|
|
|
for clause in clauses:
|
|
if clause.evaluate(model):
|
|
continue
|
|
for literal in clause.literals:
|
|
literals.append(literal)
|
|
|
|
for s in symbols:
|
|
sym = s + "'"
|
|
if (s in literals and sym not in literals) or (
|
|
s not in literals and sym in literals
|
|
):
|
|
pure_symbols.append(s)
|
|
for p in pure_symbols:
|
|
assignment[p] = None
|
|
for s in pure_symbols:
|
|
sym = s + "'"
|
|
if s in literals:
|
|
assignment[s] = True
|
|
elif sym in literals:
|
|
assignment[s] = False
|
|
return pure_symbols, assignment
|
|
|
|
|
|
def find_unit_clauses(
|
|
clauses: list[Clause],
|
|
model: dict[str, bool | None], # noqa: ARG001
|
|
) -> tuple[list[str], dict[str, bool | None]]:
|
|
"""
|
|
Returns the unit symbols and their values to satisfy clause.
|
|
|
|
Unit symbols are symbols in a formula that are:
|
|
- Either the only symbol in a clause
|
|
- Or all other literals in that clause have been assigned ``False``
|
|
|
|
This has the following steps:
|
|
1. Find symbols that are the only occurrences in a clause.
|
|
2. Find symbols in a clause where all other literals are assigned ``False``.
|
|
3. Assign ``True`` or ``False`` depending on whether the symbols occurs in
|
|
normal or complemented form respectively.
|
|
|
|
>>> clause1 = Clause(["A4", "A3", "A5'", "A1", "A3'"])
|
|
>>> clause2 = Clause(["A4"])
|
|
>>> clause3 = Clause(["A3"])
|
|
>>> clauses, symbols = generate_parameters(Formula([clause1, clause2, clause3]))
|
|
>>> unit_clauses, values = find_unit_clauses(clauses, {})
|
|
>>> unit_clauses
|
|
['A4', 'A3']
|
|
>>> values
|
|
{'A4': True, 'A3': True}
|
|
"""
|
|
unit_symbols = []
|
|
for clause in clauses:
|
|
if len(clause) == 1:
|
|
unit_symbols.append(next(iter(clause.literals.keys())))
|
|
else:
|
|
f_count, n_count = 0, 0
|
|
for literal, value in clause.literals.items():
|
|
if value is False:
|
|
f_count += 1
|
|
elif value is None:
|
|
sym = literal
|
|
n_count += 1
|
|
if f_count == len(clause) - 1 and n_count == 1:
|
|
unit_symbols.append(sym)
|
|
assignment: dict[str, bool | None] = {}
|
|
for i in unit_symbols:
|
|
symbol = i[:2]
|
|
assignment[symbol] = len(i) == 2
|
|
unit_symbols = [i[:2] for i in unit_symbols]
|
|
|
|
return unit_symbols, assignment
|
|
|
|
|
|
def dpll_algorithm(
|
|
clauses: list[Clause], symbols: list[str], model: dict[str, bool | None]
|
|
) -> tuple[bool | None, dict[str, bool | None] | None]:
|
|
"""
|
|
Returns the model if the formula is satisfiable, else ``None``
|
|
|
|
This has the following steps:
|
|
1. If every clause in clauses is ``True``, return ``True``.
|
|
2. If some clause in clauses is ``False``, return ``False``.
|
|
3. Find pure symbols.
|
|
4. Find unit symbols.
|
|
|
|
>>> formula = Formula([Clause(["A4", "A3", "A5'", "A1", "A3'"]), Clause(["A4"])])
|
|
>>> clauses, symbols = generate_parameters(formula)
|
|
>>> soln, model = dpll_algorithm(clauses, symbols, {})
|
|
>>> soln
|
|
True
|
|
>>> model
|
|
{'A4': True}
|
|
"""
|
|
check_clause_all_true = True
|
|
for clause in clauses:
|
|
clause_check = clause.evaluate(model)
|
|
if clause_check is False:
|
|
return False, None
|
|
elif clause_check is None:
|
|
check_clause_all_true = False
|
|
continue
|
|
|
|
if check_clause_all_true:
|
|
return True, model
|
|
|
|
try:
|
|
pure_symbols, assignment = find_pure_symbols(clauses, symbols, model)
|
|
except RecursionError:
|
|
print("raises a RecursionError and is")
|
|
return None, {}
|
|
p = None
|
|
if len(pure_symbols) > 0:
|
|
p, value = pure_symbols[0], assignment[pure_symbols[0]]
|
|
|
|
if p:
|
|
tmp_model = model
|
|
tmp_model[p] = value
|
|
tmp_symbols = list(symbols)
|
|
if p in tmp_symbols:
|
|
tmp_symbols.remove(p)
|
|
return dpll_algorithm(clauses, tmp_symbols, tmp_model)
|
|
|
|
unit_symbols, assignment = find_unit_clauses(clauses, model)
|
|
p = None
|
|
if len(unit_symbols) > 0:
|
|
p, value = unit_symbols[0], assignment[unit_symbols[0]]
|
|
if p:
|
|
tmp_model = model
|
|
tmp_model[p] = value
|
|
tmp_symbols = list(symbols)
|
|
if p in tmp_symbols:
|
|
tmp_symbols.remove(p)
|
|
return dpll_algorithm(clauses, tmp_symbols, tmp_model)
|
|
p = symbols[0]
|
|
rest = symbols[1:]
|
|
tmp1, tmp2 = model, model
|
|
tmp1[p], tmp2[p] = True, False
|
|
|
|
return dpll_algorithm(clauses, rest, tmp1) or dpll_algorithm(clauses, rest, tmp2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
|
|
formula = generate_formula()
|
|
print(f"The formula {formula} is", end=" ")
|
|
|
|
clauses, symbols = generate_parameters(formula)
|
|
solution, model = dpll_algorithm(clauses, symbols, {})
|
|
|
|
if solution:
|
|
print(f"satisfiable with the assignment {model}.")
|
|
else:
|
|
print("not satisfiable.")
|