mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
d848bfbf32
* adding pooling algorithms * pooling.py: Adding pooling algorithms to computer vision pull_number= * pooling.py: Adding pooling algorithms to computer vision * pooling_functions.py: Adding pooling algorithms to computer vision * pooling.py: Adding Pooling Algorithms * pooling_functions.py Add and Update * Update pooling_functions.py * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update computer_vision/pooling_functions.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update pooling_functions.py * Formatting pooling.py Co-authored-by: Christian Clauss <cclauss@me.com>
136 lines
4.2 KiB
Python
136 lines
4.2 KiB
Python
# Source : https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
|
|
# Importing the libraries
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
|
|
# Maxpooling Function
|
|
def maxpooling(arr: np.ndarray, size: int, stride: int) -> np.ndarray:
|
|
"""
|
|
This function is used to perform maxpooling on the input array of 2D matrix(image)
|
|
Args:
|
|
arr: numpy array
|
|
size: size of pooling matrix
|
|
stride: the number of pixels shifts over the input matrix
|
|
Returns:
|
|
numpy array of maxpooled matrix
|
|
Sample Input Output:
|
|
>>> maxpooling([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], 2, 2)
|
|
array([[ 6., 8.],
|
|
[14., 16.]])
|
|
>>> maxpooling([[147, 180, 122],[241, 76, 32],[126, 13, 157]], 2, 1)
|
|
array([[241., 180.],
|
|
[241., 157.]])
|
|
"""
|
|
arr = np.array(arr)
|
|
if arr.shape[0] != arr.shape[1]:
|
|
raise ValueError("The input array is not a square matrix")
|
|
i = 0
|
|
j = 0
|
|
mat_i = 0
|
|
mat_j = 0
|
|
|
|
# compute the shape of the output matrix
|
|
maxpool_shape = (arr.shape[0] - size) // stride + 1
|
|
# initialize the output matrix with zeros of shape maxpool_shape
|
|
updated_arr = np.zeros((maxpool_shape, maxpool_shape))
|
|
|
|
while i < arr.shape[0]:
|
|
if i + size > arr.shape[0]:
|
|
# if the end of the matrix is reached, break
|
|
break
|
|
while j < arr.shape[1]:
|
|
# if the end of the matrix is reached, break
|
|
if j + size > arr.shape[1]:
|
|
break
|
|
# compute the maximum of the pooling matrix
|
|
updated_arr[mat_i][mat_j] = np.max(arr[i : i + size, j : j + size])
|
|
# shift the pooling matrix by stride of column pixels
|
|
j += stride
|
|
mat_j += 1
|
|
|
|
# shift the pooling matrix by stride of row pixels
|
|
i += stride
|
|
mat_i += 1
|
|
|
|
# reset the column index to 0
|
|
j = 0
|
|
mat_j = 0
|
|
|
|
return updated_arr
|
|
|
|
|
|
# Averagepooling Function
|
|
def avgpooling(arr: np.ndarray, size: int, stride: int) -> np.ndarray:
|
|
"""
|
|
This function is used to perform avgpooling on the input array of 2D matrix(image)
|
|
Args:
|
|
arr: numpy array
|
|
size: size of pooling matrix
|
|
stride: the number of pixels shifts over the input matrix
|
|
Returns:
|
|
numpy array of avgpooled matrix
|
|
Sample Input Output:
|
|
>>> avgpooling([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], 2, 2)
|
|
array([[ 3., 5.],
|
|
[11., 13.]])
|
|
>>> avgpooling([[147, 180, 122],[241, 76, 32],[126, 13, 157]], 2, 1)
|
|
array([[161., 102.],
|
|
[114., 69.]])
|
|
"""
|
|
arr = np.array(arr)
|
|
if arr.shape[0] != arr.shape[1]:
|
|
raise ValueError("The input array is not a square matrix")
|
|
i = 0
|
|
j = 0
|
|
mat_i = 0
|
|
mat_j = 0
|
|
|
|
# compute the shape of the output matrix
|
|
avgpool_shape = (arr.shape[0] - size) // stride + 1
|
|
# initialize the output matrix with zeros of shape avgpool_shape
|
|
updated_arr = np.zeros((avgpool_shape, avgpool_shape))
|
|
|
|
while i < arr.shape[0]:
|
|
# if the end of the matrix is reached, break
|
|
if i + size > arr.shape[0]:
|
|
break
|
|
while j < arr.shape[1]:
|
|
# if the end of the matrix is reached, break
|
|
if j + size > arr.shape[1]:
|
|
break
|
|
# compute the average of the pooling matrix
|
|
updated_arr[mat_i][mat_j] = int(np.average(arr[i : i + size, j : j + size]))
|
|
# shift the pooling matrix by stride of column pixels
|
|
j += stride
|
|
mat_j += 1
|
|
|
|
# shift the pooling matrix by stride of row pixels
|
|
i += stride
|
|
mat_i += 1
|
|
# reset the column index to 0
|
|
j = 0
|
|
mat_j = 0
|
|
|
|
return updated_arr
|
|
|
|
|
|
# Main Function
|
|
if __name__ == "__main__":
|
|
from doctest import testmod
|
|
|
|
testmod(name="avgpooling", verbose=True)
|
|
|
|
# Loading the image
|
|
image = Image.open("path_to_image")
|
|
|
|
# Converting the image to numpy array and maxpooling, displaying the result
|
|
# Ensure that the image is a square matrix
|
|
|
|
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
|
|
|
|
# Converting the image to numpy array and averagepooling, displaying the result
|
|
# Ensure that the image is a square matrix
|
|
|
|
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
|