mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
7f04e5cd34
* spelling corrections * review * improved documentation, removed redundant variables, added testing * added type hint * camel case to snake case * spelling fix * review * python --> Python # it is a brand name, not a snake * explicit cast to int * spaces in int list * "!= None" to "is not None" * Update comb_sort.py * various spelling corrections in documentation & several variables naming conventions fix * + char in file name * import dependency - bug fix Co-authored-by: John Law <johnlaw.po@gmail.com>
498 lines
15 KiB
Python
498 lines
15 KiB
Python
from collections import deque
|
|
import random as rand
|
|
import math as math
|
|
import time
|
|
|
|
# the default weight is 1 if not assigned but all the implementation is weighted
|
|
|
|
|
|
class DirectedGraph:
|
|
def __init__(self):
|
|
self.graph = {}
|
|
|
|
# adding vertices and edges
|
|
# adding the weight is optional
|
|
# handles repetition
|
|
def add_pair(self, u, v, w=1):
|
|
if self.graph.get(u):
|
|
if self.graph[u].count([w, v]) == 0:
|
|
self.graph[u].append([w, v])
|
|
else:
|
|
self.graph[u] = [[w, v]]
|
|
if not self.graph.get(v):
|
|
self.graph[v] = []
|
|
|
|
def all_nodes(self):
|
|
return list(self.graph)
|
|
|
|
# handles if the input does not exist
|
|
def remove_pair(self, u, v):
|
|
if self.graph.get(u):
|
|
for _ in self.graph[u]:
|
|
if _[1] == v:
|
|
self.graph[u].remove(_)
|
|
|
|
# if no destination is meant the default value is -1
|
|
def dfs(self, s=-2, d=-1):
|
|
if s == d:
|
|
return []
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if visited.count(__[1]) < 1:
|
|
if __[1] == d:
|
|
visited.append(d)
|
|
return visited
|
|
else:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return visited
|
|
|
|
# c is the count of nodes you want and if you leave it or pass -1 to the function the count
|
|
# will be random from 10 to 10000
|
|
def fill_graph_randomly(self, c=-1):
|
|
if c == -1:
|
|
c = (math.floor(rand.random() * 10000)) + 10
|
|
for _ in range(c):
|
|
# every vertex has max 100 edges
|
|
e = math.floor(rand.random() * 102) + 1
|
|
for __ in range(e):
|
|
n = math.floor(rand.random() * (c)) + 1
|
|
if n == _:
|
|
continue
|
|
self.add_pair(_, n, 1)
|
|
|
|
def bfs(self, s=-2):
|
|
d = deque()
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph.keys())[0]
|
|
d.append(s)
|
|
visited.append(s)
|
|
while d:
|
|
s = d.popleft()
|
|
if len(self.graph[s]) != 0:
|
|
for __ in self.graph[s]:
|
|
if visited.count(__[1]) < 1:
|
|
d.append(__[1])
|
|
visited.append(__[1])
|
|
return visited
|
|
|
|
def in_degree(self, u):
|
|
count = 0
|
|
for _ in self.graph:
|
|
for __ in self.graph[_]:
|
|
if __[1] == u:
|
|
count += 1
|
|
return count
|
|
|
|
def out_degree(self, u):
|
|
return len(self.graph[u])
|
|
|
|
def topological_sort(self, s=-2):
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
sorted_nodes = []
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if visited.count(__[1]) < 1:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
sorted_nodes.append(stack.pop())
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return sorted_nodes
|
|
|
|
def cycle_nodes(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if (
|
|
visited.count(__[1]) > 0
|
|
and __[1] != parent
|
|
and indirect_parents.count(__[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
l = len(stack) - 1
|
|
while True and l >= 0:
|
|
if stack[l] == __[1]:
|
|
anticipating_nodes.add(__[1])
|
|
break
|
|
else:
|
|
anticipating_nodes.add(stack[l])
|
|
l -= 1
|
|
if visited.count(__[1]) < 1:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return list(anticipating_nodes)
|
|
|
|
def has_cycle(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if (
|
|
visited.count(__[1]) > 0
|
|
and __[1] != parent
|
|
and indirect_parents.count(__[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
l = len(stack) - 1
|
|
while True and l >= 0:
|
|
if stack[l] == __[1]:
|
|
anticipating_nodes.add(__[1])
|
|
break
|
|
else:
|
|
return True
|
|
anticipating_nodes.add(stack[l])
|
|
l -= 1
|
|
if visited.count(__[1]) < 1:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return False
|
|
|
|
def dfs_time(self, s=-2, e=-1):
|
|
begin = time.time()
|
|
self.dfs(s, e)
|
|
end = time.time()
|
|
return end - begin
|
|
|
|
def bfs_time(self, s=-2):
|
|
begin = time.time()
|
|
self.bfs(s)
|
|
end = time.time()
|
|
return end - begin
|
|
|
|
|
|
class Graph:
|
|
def __init__(self):
|
|
self.graph = {}
|
|
|
|
# adding vertices and edges
|
|
# adding the weight is optional
|
|
# handles repetition
|
|
def add_pair(self, u, v, w=1):
|
|
# check if the u exists
|
|
if self.graph.get(u):
|
|
# if there already is a edge
|
|
if self.graph[u].count([w, v]) == 0:
|
|
self.graph[u].append([w, v])
|
|
else:
|
|
# if u does not exist
|
|
self.graph[u] = [[w, v]]
|
|
# add the other way
|
|
if self.graph.get(v):
|
|
# if there already is a edge
|
|
if self.graph[v].count([w, u]) == 0:
|
|
self.graph[v].append([w, u])
|
|
else:
|
|
# if u does not exist
|
|
self.graph[v] = [[w, u]]
|
|
|
|
# handles if the input does not exist
|
|
def remove_pair(self, u, v):
|
|
if self.graph.get(u):
|
|
for _ in self.graph[u]:
|
|
if _[1] == v:
|
|
self.graph[u].remove(_)
|
|
# the other way round
|
|
if self.graph.get(v):
|
|
for _ in self.graph[v]:
|
|
if _[1] == u:
|
|
self.graph[v].remove(_)
|
|
|
|
# if no destination is meant the default value is -1
|
|
def dfs(self, s=-2, d=-1):
|
|
if s == d:
|
|
return []
|
|
stack = []
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
ss = s
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if visited.count(__[1]) < 1:
|
|
if __[1] == d:
|
|
visited.append(d)
|
|
return visited
|
|
else:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return visited
|
|
|
|
# c is the count of nodes you want and if you leave it or pass -1 to the function the count
|
|
# will be random from 10 to 10000
|
|
def fill_graph_randomly(self, c=-1):
|
|
if c == -1:
|
|
c = (math.floor(rand.random() * 10000)) + 10
|
|
for _ in range(c):
|
|
# every vertex has max 100 edges
|
|
e = math.floor(rand.random() * 102) + 1
|
|
for __ in range(e):
|
|
n = math.floor(rand.random() * (c)) + 1
|
|
if n == _:
|
|
continue
|
|
self.add_pair(_, n, 1)
|
|
|
|
def bfs(self, s=-2):
|
|
d = deque()
|
|
visited = []
|
|
if s == -2:
|
|
s = list(self.graph.keys())[0]
|
|
d.append(s)
|
|
visited.append(s)
|
|
while d:
|
|
s = d.popleft()
|
|
if len(self.graph[s]) != 0:
|
|
for __ in self.graph[s]:
|
|
if visited.count(__[1]) < 1:
|
|
d.append(__[1])
|
|
visited.append(__[1])
|
|
return visited
|
|
|
|
def degree(self, u):
|
|
return len(self.graph[u])
|
|
|
|
def cycle_nodes(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if (
|
|
visited.count(__[1]) > 0
|
|
and __[1] != parent
|
|
and indirect_parents.count(__[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
l = len(stack) - 1
|
|
while True and l >= 0:
|
|
if stack[l] == __[1]:
|
|
anticipating_nodes.add(__[1])
|
|
break
|
|
else:
|
|
anticipating_nodes.add(stack[l])
|
|
l -= 1
|
|
if visited.count(__[1]) < 1:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return list(anticipating_nodes)
|
|
|
|
def has_cycle(self):
|
|
stack = []
|
|
visited = []
|
|
s = list(self.graph.keys())[0]
|
|
stack.append(s)
|
|
visited.append(s)
|
|
parent = -2
|
|
indirect_parents = []
|
|
ss = s
|
|
on_the_way_back = False
|
|
anticipating_nodes = set()
|
|
|
|
while True:
|
|
# check if there is any non isolated nodes
|
|
if len(self.graph[s]) != 0:
|
|
ss = s
|
|
for __ in self.graph[s]:
|
|
if (
|
|
visited.count(__[1]) > 0
|
|
and __[1] != parent
|
|
and indirect_parents.count(__[1]) > 0
|
|
and not on_the_way_back
|
|
):
|
|
l = len(stack) - 1
|
|
while True and l >= 0:
|
|
if stack[l] == __[1]:
|
|
anticipating_nodes.add(__[1])
|
|
break
|
|
else:
|
|
return True
|
|
anticipating_nodes.add(stack[l])
|
|
l -= 1
|
|
if visited.count(__[1]) < 1:
|
|
stack.append(__[1])
|
|
visited.append(__[1])
|
|
ss = __[1]
|
|
break
|
|
|
|
# check if all the children are visited
|
|
if s == ss:
|
|
stack.pop()
|
|
on_the_way_back = True
|
|
if len(stack) != 0:
|
|
s = stack[len(stack) - 1]
|
|
else:
|
|
on_the_way_back = False
|
|
indirect_parents.append(parent)
|
|
parent = s
|
|
s = ss
|
|
|
|
# check if se have reached the starting point
|
|
if len(stack) == 0:
|
|
return False
|
|
|
|
def all_nodes(self):
|
|
return list(self.graph)
|
|
|
|
def dfs_time(self, s=-2, e=-1):
|
|
begin = time.time()
|
|
self.dfs(s, e)
|
|
end = time.time()
|
|
return end - begin
|
|
|
|
def bfs_time(self, s=-2):
|
|
begin = time.time()
|
|
self.bfs(s)
|
|
end = time.time()
|
|
return end - begin
|