mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 17:20:16 +00:00
59cae167e0
* Reduce the complexity of digital_image_processing/edge_detection/canny.py * Fix * updating DIRECTORY.md * updating DIRECTORY.md * updating DIRECTORY.md * Fix review issues * Rename dst to destination --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
144 lines
5.3 KiB
Python
144 lines
5.3 KiB
Python
import cv2
|
||
import numpy as np
|
||
|
||
from digital_image_processing.filters.convolve import img_convolve
|
||
from digital_image_processing.filters.sobel_filter import sobel_filter
|
||
|
||
PI = 180
|
||
|
||
|
||
def gen_gaussian_kernel(k_size, sigma):
|
||
center = k_size // 2
|
||
x, y = np.mgrid[0 - center : k_size - center, 0 - center : k_size - center]
|
||
g = (
|
||
1
|
||
/ (2 * np.pi * sigma)
|
||
* np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
|
||
)
|
||
return g
|
||
|
||
|
||
def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
|
||
"""
|
||
Non-maximum suppression. If the edge strength of the current pixel is the largest
|
||
compared to the other pixels in the mask with the same direction, the value will be
|
||
preserved. Otherwise, the value will be suppressed.
|
||
"""
|
||
destination = np.zeros(image_shape)
|
||
|
||
for row in range(1, image_shape[0] - 1):
|
||
for col in range(1, image_shape[1] - 1):
|
||
direction = gradient_direction[row, col]
|
||
|
||
if (
|
||
0 <= direction < PI / 8
|
||
or 15 * PI / 8 <= direction <= 2 * PI
|
||
or 7 * PI / 8 <= direction <= 9 * PI / 8
|
||
):
|
||
w = sobel_grad[row, col - 1]
|
||
e = sobel_grad[row, col + 1]
|
||
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
|
||
destination[row, col] = sobel_grad[row, col]
|
||
|
||
elif (
|
||
PI / 8 <= direction < 3 * PI / 8
|
||
or 9 * PI / 8 <= direction < 11 * PI / 8
|
||
):
|
||
sw = sobel_grad[row + 1, col - 1]
|
||
ne = sobel_grad[row - 1, col + 1]
|
||
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
|
||
destination[row, col] = sobel_grad[row, col]
|
||
|
||
elif (
|
||
3 * PI / 8 <= direction < 5 * PI / 8
|
||
or 11 * PI / 8 <= direction < 13 * PI / 8
|
||
):
|
||
n = sobel_grad[row - 1, col]
|
||
s = sobel_grad[row + 1, col]
|
||
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
|
||
destination[row, col] = sobel_grad[row, col]
|
||
|
||
elif (
|
||
5 * PI / 8 <= direction < 7 * PI / 8
|
||
or 13 * PI / 8 <= direction < 15 * PI / 8
|
||
):
|
||
nw = sobel_grad[row - 1, col - 1]
|
||
se = sobel_grad[row + 1, col + 1]
|
||
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
|
||
destination[row, col] = sobel_grad[row, col]
|
||
|
||
return destination
|
||
|
||
|
||
def detect_high_low_threshold(
|
||
image_shape, destination, threshold_low, threshold_high, weak, strong
|
||
):
|
||
"""
|
||
High-Low threshold detection. If an edge pixel’s gradient value is higher
|
||
than the high threshold value, it is marked as a strong edge pixel. If an
|
||
edge pixel’s gradient value is smaller than the high threshold value and
|
||
larger than the low threshold value, it is marked as a weak edge pixel. If
|
||
an edge pixel's value is smaller than the low threshold value, it will be
|
||
suppressed.
|
||
"""
|
||
for row in range(1, image_shape[0] - 1):
|
||
for col in range(1, image_shape[1] - 1):
|
||
if destination[row, col] >= threshold_high:
|
||
destination[row, col] = strong
|
||
elif destination[row, col] <= threshold_low:
|
||
destination[row, col] = 0
|
||
else:
|
||
destination[row, col] = weak
|
||
|
||
|
||
def track_edge(image_shape, destination, weak, strong):
|
||
"""
|
||
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
|
||
to a strong edge pixel while noise responses are unconnected. As long as there is
|
||
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
|
||
edge point can be identified as one that should be preserved.
|
||
"""
|
||
for row in range(1, image_shape[0]):
|
||
for col in range(1, image_shape[1]):
|
||
if destination[row, col] == weak:
|
||
if 255 in (
|
||
destination[row, col + 1],
|
||
destination[row, col - 1],
|
||
destination[row - 1, col],
|
||
destination[row + 1, col],
|
||
destination[row - 1, col - 1],
|
||
destination[row + 1, col - 1],
|
||
destination[row - 1, col + 1],
|
||
destination[row + 1, col + 1],
|
||
):
|
||
destination[row, col] = strong
|
||
else:
|
||
destination[row, col] = 0
|
||
|
||
|
||
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
|
||
# gaussian_filter
|
||
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
|
||
# get the gradient and degree by sobel_filter
|
||
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
|
||
gradient_direction = PI + np.rad2deg(sobel_theta)
|
||
|
||
destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
|
||
|
||
detect_high_low_threshold(
|
||
image.shape, destination, threshold_low, threshold_high, weak, strong
|
||
)
|
||
|
||
track_edge(image.shape, destination, weak, strong)
|
||
|
||
return destination
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# read original image in gray mode
|
||
lena = cv2.imread(r"../image_data/lena.jpg", 0)
|
||
# canny edge detection
|
||
canny_destination = canny(lena)
|
||
cv2.imshow("canny", canny_destination)
|
||
cv2.waitKey(0)
|