mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
"""
|
|
Conway's Game of Life implemented in Python.
|
|
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from PIL import Image
|
|
|
|
# Define glider example
|
|
GLIDER = [
|
|
[0, 1, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 0, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
|
|
# Define blinker example
|
|
BLINKER = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
|
|
|
|
|
|
def new_generation(cells: list[list[int]]) -> list[list[int]]:
|
|
"""
|
|
Generates the next generation for a given state of Conway's Game of Life.
|
|
>>> new_generation(BLINKER)
|
|
[[0, 0, 0], [1, 1, 1], [0, 0, 0]]
|
|
"""
|
|
next_generation = []
|
|
for i in range(len(cells)):
|
|
next_generation_row = []
|
|
for j in range(len(cells[i])):
|
|
# Get the number of live neighbours
|
|
neighbour_count = 0
|
|
if i > 0 and j > 0:
|
|
neighbour_count += cells[i - 1][j - 1]
|
|
if i > 0:
|
|
neighbour_count += cells[i - 1][j]
|
|
if i > 0 and j < len(cells[i]) - 1:
|
|
neighbour_count += cells[i - 1][j + 1]
|
|
if j > 0:
|
|
neighbour_count += cells[i][j - 1]
|
|
if j < len(cells[i]) - 1:
|
|
neighbour_count += cells[i][j + 1]
|
|
if i < len(cells) - 1 and j > 0:
|
|
neighbour_count += cells[i + 1][j - 1]
|
|
if i < len(cells) - 1:
|
|
neighbour_count += cells[i + 1][j]
|
|
if i < len(cells) - 1 and j < len(cells[i]) - 1:
|
|
neighbour_count += cells[i + 1][j + 1]
|
|
|
|
# Rules of the game of life (excerpt from Wikipedia):
|
|
# 1. Any live cell with two or three live neighbours survives.
|
|
# 2. Any dead cell with three live neighbours becomes a live cell.
|
|
# 3. All other live cells die in the next generation.
|
|
# Similarly, all other dead cells stay dead.
|
|
alive = cells[i][j] == 1
|
|
if (
|
|
(alive and 2 <= neighbour_count <= 3)
|
|
or not alive
|
|
and neighbour_count == 3
|
|
):
|
|
next_generation_row.append(1)
|
|
else:
|
|
next_generation_row.append(0)
|
|
|
|
next_generation.append(next_generation_row)
|
|
return next_generation
|
|
|
|
|
|
def generate_images(cells: list[list[int]], frames: int) -> list[Image.Image]:
|
|
"""
|
|
Generates a list of images of subsequent Game of Life states.
|
|
"""
|
|
images = []
|
|
for _ in range(frames):
|
|
# Create output image
|
|
img = Image.new("RGB", (len(cells[0]), len(cells)))
|
|
pixels = img.load()
|
|
|
|
# Save cells to image
|
|
for x in range(len(cells)):
|
|
for y in range(len(cells[0])):
|
|
colour = 255 - cells[y][x] * 255
|
|
pixels[x, y] = (colour, colour, colour)
|
|
|
|
# Save image
|
|
images.append(img)
|
|
cells = new_generation(cells)
|
|
return images
|
|
|
|
|
|
if __name__ == "__main__":
|
|
images = generate_images(GLIDER, 16)
|
|
images[0].save("out.gif", save_all=True, append_images=images[1:])
|