Python/machine_learning/lstm/lstm_prediction.py
Maxim Smolskiy fd27953d44
Reenable files when TensorFlow supports the current Python (#11318)
* Remove python_version < '3.12' for tensorflow

* Reenable dynamic_programming/k_means_clustering_tensorflow.py

* updating DIRECTORY.md

* Try to fix ruff

* Try to fix ruff

* Try to fix ruff

* Try to fix ruff

* Try to fix ruff

* Reenable machine_learning/lstm/lstm_prediction.py

* updating DIRECTORY.md

* Try to fix ruff

* Reenable computer_vision/cnn_classification.py

* updating DIRECTORY.md

* Reenable neural_network/input_data.py

* updating DIRECTORY.md

* Try to fix ruff

* Try to fix ruff

* Try to fix mypy

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Try to fix ruff

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: MaximSmolskiy <MaximSmolskiy@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-12 09:35:49 +01:00

55 lines
2.2 KiB
Python

"""
Create a Long Short Term Memory (LSTM) network model
An LSTM is a type of Recurrent Neural Network (RNN) as discussed at:
* https://colah.github.io/posts/2015-08-Understanding-LSTMs
* https://en.wikipedia.org/wiki/Long_short-term_memory
"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
"""
First part of building a model is to get the data and prepare
it for our model. You can use any dataset for stock prediction
make sure you set the price column on line number 21. Here we
use a dataset which have the price on 3rd column.
"""
sample_data = pd.read_csv("sample_data.csv", header=None)
len_data = sample_data.shape[:1][0]
# If you're using some other dataset input the target column
actual_data = sample_data.iloc[:, 1:2]
actual_data = actual_data.to_numpy().reshape(len_data, 1)
actual_data = MinMaxScaler().fit_transform(actual_data)
look_back = 10
forward_days = 5
periods = 20
division = len_data - periods * look_back
train_data = actual_data[:division]
test_data = actual_data[division - look_back :]
train_x, train_y = [], []
test_x, test_y = [], []
for i in range(len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
x_train = np.array(train_x)
x_test = np.array(test_x)
y_train = np.array([list(i.ravel()) for i in train_y])
y_test = np.array([list(i.ravel()) for i in test_y])
model = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
history = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
pred = model.predict(x_test)