Python/machine_learning/gradient_boosting_regressor.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

67 lines
2.3 KiB
Python

"""Implementation of GradientBoostingRegressor in sklearn using the
boston dataset which is very popular for regression problem to
predict house price.
"""
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
def main():
# loading the dataset from the sklearn
df = load_boston()
print(df.keys())
# now let construct a data frame
df_boston = pd.DataFrame(df.data, columns=df.feature_names)
# let add the target to the dataframe
df_boston["Price"] = df.target
# print the first five rows using the head function
print(df_boston.head())
# Summary statistics
print(df_boston.describe().T)
# Feature selection
x = df_boston.iloc[:, :-1]
y = df_boston.iloc[:, -1] # target variable
# split the data with 75% train and 25% test sets.
x_train, x_test, y_train, y_test = train_test_split(
x, y, random_state=0, test_size=0.25
)
model = GradientBoostingRegressor(
n_estimators=500, max_depth=5, min_samples_split=4, learning_rate=0.01
)
# training the model
model.fit(x_train, y_train)
# to see how good the model fit the data
training_score = model.score(x_train, y_train).round(3)
test_score = model.score(x_test, y_test).round(3)
print("Training score of GradientBoosting is :", training_score)
print("The test score of GradientBoosting is :", test_score)
# Let us evaluation the model by finding the errors
y_pred = model.predict(x_test)
# The mean squared error
print(f"Mean squared error: {mean_squared_error(y_test, y_pred):.2f}")
# Explained variance score: 1 is perfect prediction
print(f"Test Variance score: {r2_score(y_test, y_pred):.2f}")
# So let's run the model against the test data
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors=(0, 0, 0))
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], "k--", lw=4)
ax.set_xlabel("Actual")
ax.set_ylabel("Predicted")
ax.set_title("Truth vs Predicted")
# this show function will display the plotting
plt.show()
if __name__ == "__main__":
main()