mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
b814cf3781
* add exponential_search algorithm * replace binary_search with binary_search_recursion * convert left type to int to be useable in binary_search_recursion * add docs and tests for exponential_search algorithm * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * move exponential_search to binary_search.py to pass github auto build tests delete exponential_search.py file * Update searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * remove additional space searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * return single data type in exponential_search searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * add doctest mod searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use // instread of int() convert searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * change test according to new code searches/binary_search.py Co-authored-by: Christian Clauss <cclauss@me.com> * fix binary_search_recursion multiple type return error * add a timeit benchmark for exponential_search * sort input of binary search to be equal in performance test with exponential_search * raise value error instead of sorting input in binary and exonential search to fix bugs * Update binary_search.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: user <user@kali.user>
360 lines
11 KiB
Python
360 lines
11 KiB
Python
#!/usr/bin/env python3
|
|
|
|
"""
|
|
Pure Python implementations of binary search algorithms
|
|
|
|
For doctests run the following command:
|
|
python3 -m doctest -v binary_search.py
|
|
|
|
For manual testing run:
|
|
python3 binary_search.py
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import bisect
|
|
|
|
|
|
def bisect_left(
|
|
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
|
|
) -> int:
|
|
"""
|
|
Locates the first element in a sorted array that is larger or equal to a given
|
|
value.
|
|
|
|
It has the same interface as
|
|
https://docs.python.org/3/library/bisect.html#bisect.bisect_left .
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item to bisect
|
|
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
|
|
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
|
|
:return: index i such that all values in sorted_collection[lo:i] are < item and all
|
|
values in sorted_collection[i:hi] are >= item.
|
|
|
|
Examples:
|
|
>>> bisect_left([0, 5, 7, 10, 15], 0)
|
|
0
|
|
>>> bisect_left([0, 5, 7, 10, 15], 6)
|
|
2
|
|
>>> bisect_left([0, 5, 7, 10, 15], 20)
|
|
5
|
|
>>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
|
|
3
|
|
>>> bisect_left([0, 5, 7, 10, 15], 6, 2)
|
|
2
|
|
"""
|
|
if hi < 0:
|
|
hi = len(sorted_collection)
|
|
|
|
while lo < hi:
|
|
mid = lo + (hi - lo) // 2
|
|
if sorted_collection[mid] < item:
|
|
lo = mid + 1
|
|
else:
|
|
hi = mid
|
|
|
|
return lo
|
|
|
|
|
|
def bisect_right(
|
|
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
|
|
) -> int:
|
|
"""
|
|
Locates the first element in a sorted array that is larger than a given value.
|
|
|
|
It has the same interface as
|
|
https://docs.python.org/3/library/bisect.html#bisect.bisect_right .
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item to bisect
|
|
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
|
|
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
|
|
:return: index i such that all values in sorted_collection[lo:i] are <= item and
|
|
all values in sorted_collection[i:hi] are > item.
|
|
|
|
Examples:
|
|
>>> bisect_right([0, 5, 7, 10, 15], 0)
|
|
1
|
|
>>> bisect_right([0, 5, 7, 10, 15], 15)
|
|
5
|
|
>>> bisect_right([0, 5, 7, 10, 15], 6)
|
|
2
|
|
>>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
|
|
3
|
|
>>> bisect_right([0, 5, 7, 10, 15], 6, 2)
|
|
2
|
|
"""
|
|
if hi < 0:
|
|
hi = len(sorted_collection)
|
|
|
|
while lo < hi:
|
|
mid = lo + (hi - lo) // 2
|
|
if sorted_collection[mid] <= item:
|
|
lo = mid + 1
|
|
else:
|
|
hi = mid
|
|
|
|
return lo
|
|
|
|
|
|
def insort_left(
|
|
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
|
|
) -> None:
|
|
"""
|
|
Inserts a given value into a sorted array before other values with the same value.
|
|
|
|
It has the same interface as
|
|
https://docs.python.org/3/library/bisect.html#bisect.insort_left .
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item to insert
|
|
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
|
|
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
|
|
|
|
Examples:
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_left(sorted_collection, 6)
|
|
>>> sorted_collection
|
|
[0, 5, 6, 7, 10, 15]
|
|
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
|
|
>>> item = (5, 5)
|
|
>>> insort_left(sorted_collection, item)
|
|
>>> sorted_collection
|
|
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
|
|
>>> item is sorted_collection[1]
|
|
True
|
|
>>> item is sorted_collection[2]
|
|
False
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_left(sorted_collection, 20)
|
|
>>> sorted_collection
|
|
[0, 5, 7, 10, 15, 20]
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_left(sorted_collection, 15, 1, 3)
|
|
>>> sorted_collection
|
|
[0, 5, 7, 15, 10, 15]
|
|
"""
|
|
sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)
|
|
|
|
|
|
def insort_right(
|
|
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
|
|
) -> None:
|
|
"""
|
|
Inserts a given value into a sorted array after other values with the same value.
|
|
|
|
It has the same interface as
|
|
https://docs.python.org/3/library/bisect.html#bisect.insort_right .
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item to insert
|
|
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
|
|
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
|
|
|
|
Examples:
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_right(sorted_collection, 6)
|
|
>>> sorted_collection
|
|
[0, 5, 6, 7, 10, 15]
|
|
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
|
|
>>> item = (5, 5)
|
|
>>> insort_right(sorted_collection, item)
|
|
>>> sorted_collection
|
|
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
|
|
>>> item is sorted_collection[1]
|
|
False
|
|
>>> item is sorted_collection[2]
|
|
True
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_right(sorted_collection, 20)
|
|
>>> sorted_collection
|
|
[0, 5, 7, 10, 15, 20]
|
|
>>> sorted_collection = [0, 5, 7, 10, 15]
|
|
>>> insort_right(sorted_collection, 15, 1, 3)
|
|
>>> sorted_collection
|
|
[0, 5, 7, 15, 10, 15]
|
|
"""
|
|
sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)
|
|
|
|
|
|
def binary_search(sorted_collection: list[int], item: int) -> int:
|
|
"""Pure implementation of a binary search algorithm in Python
|
|
|
|
Be careful collection must be ascending sorted otherwise, the result will be
|
|
unpredictable
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item value to search
|
|
:return: index of the found item or -1 if the item is not found
|
|
|
|
Examples:
|
|
>>> binary_search([0, 5, 7, 10, 15], 0)
|
|
0
|
|
>>> binary_search([0, 5, 7, 10, 15], 15)
|
|
4
|
|
>>> binary_search([0, 5, 7, 10, 15], 5)
|
|
1
|
|
>>> binary_search([0, 5, 7, 10, 15], 6)
|
|
-1
|
|
"""
|
|
if list(sorted_collection) != sorted(sorted_collection):
|
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
|
left = 0
|
|
right = len(sorted_collection) - 1
|
|
|
|
while left <= right:
|
|
midpoint = left + (right - left) // 2
|
|
current_item = sorted_collection[midpoint]
|
|
if current_item == item:
|
|
return midpoint
|
|
elif item < current_item:
|
|
right = midpoint - 1
|
|
else:
|
|
left = midpoint + 1
|
|
return -1
|
|
|
|
|
|
def binary_search_std_lib(sorted_collection: list[int], item: int) -> int:
|
|
"""Pure implementation of a binary search algorithm in Python using stdlib
|
|
|
|
Be careful collection must be ascending sorted otherwise, the result will be
|
|
unpredictable
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item value to search
|
|
:return: index of the found item or -1 if the item is not found
|
|
|
|
Examples:
|
|
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
|
|
0
|
|
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
|
|
4
|
|
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
|
|
1
|
|
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
|
|
-1
|
|
"""
|
|
if list(sorted_collection) != sorted(sorted_collection):
|
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
|
index = bisect.bisect_left(sorted_collection, item)
|
|
if index != len(sorted_collection) and sorted_collection[index] == item:
|
|
return index
|
|
return -1
|
|
|
|
|
|
def binary_search_by_recursion(
|
|
sorted_collection: list[int], item: int, left: int = 0, right: int = -1
|
|
) -> int:
|
|
"""Pure implementation of a binary search algorithm in Python by recursion
|
|
|
|
Be careful collection must be ascending sorted otherwise, the result will be
|
|
unpredictable
|
|
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item value to search
|
|
:return: index of the found item or -1 if the item is not found
|
|
|
|
Examples:
|
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4)
|
|
0
|
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4)
|
|
4
|
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4)
|
|
1
|
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4)
|
|
-1
|
|
"""
|
|
if right < 0:
|
|
right = len(sorted_collection) - 1
|
|
if list(sorted_collection) != sorted(sorted_collection):
|
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
|
if right < left:
|
|
return -1
|
|
|
|
midpoint = left + (right - left) // 2
|
|
|
|
if sorted_collection[midpoint] == item:
|
|
return midpoint
|
|
elif sorted_collection[midpoint] > item:
|
|
return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
|
|
else:
|
|
return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)
|
|
|
|
|
|
def exponential_search(sorted_collection: list[int], item: int) -> int:
|
|
"""Pure implementation of an exponential search algorithm in Python
|
|
Resources used:
|
|
https://en.wikipedia.org/wiki/Exponential_search
|
|
|
|
Be careful collection must be ascending sorted otherwise, result will be
|
|
unpredictable
|
|
|
|
:param sorted_collection: some ascending sorted collection with comparable items
|
|
:param item: item value to search
|
|
:return: index of the found item or -1 if the item is not found
|
|
|
|
the order of this algorithm is O(lg I) where I is index position of item if exist
|
|
|
|
Examples:
|
|
>>> exponential_search([0, 5, 7, 10, 15], 0)
|
|
0
|
|
>>> exponential_search([0, 5, 7, 10, 15], 15)
|
|
4
|
|
>>> exponential_search([0, 5, 7, 10, 15], 5)
|
|
1
|
|
>>> exponential_search([0, 5, 7, 10, 15], 6)
|
|
-1
|
|
"""
|
|
if list(sorted_collection) != sorted(sorted_collection):
|
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
|
bound = 1
|
|
while bound < len(sorted_collection) and sorted_collection[bound] < item:
|
|
bound *= 2
|
|
left = bound // 2
|
|
right = min(bound, len(sorted_collection) - 1)
|
|
last_result = binary_search_by_recursion(
|
|
sorted_collection=sorted_collection, item=item, left=left, right=right
|
|
)
|
|
if last_result is None:
|
|
return -1
|
|
return last_result
|
|
|
|
|
|
searches = ( # Fastest to slowest...
|
|
binary_search_std_lib,
|
|
binary_search,
|
|
exponential_search,
|
|
binary_search_by_recursion,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
import timeit
|
|
|
|
doctest.testmod()
|
|
for search in searches:
|
|
name = f"{search.__name__:>26}"
|
|
print(f"{name}: {search([0, 5, 7, 10, 15], 10) = }") # type: ignore[operator]
|
|
|
|
print("\nBenchmarks...")
|
|
setup = "collection = range(1000)"
|
|
for search in searches:
|
|
name = search.__name__
|
|
print(
|
|
f"{name:>26}:",
|
|
timeit.timeit(
|
|
f"{name}(collection, 500)", setup=setup, number=5_000, globals=globals()
|
|
),
|
|
)
|
|
|
|
user_input = input("\nEnter numbers separated by comma: ").strip()
|
|
collection = sorted(int(item) for item in user_input.split(","))
|
|
target = int(input("Enter a single number to be found in the list: "))
|
|
result = binary_search(sorted_collection=collection, item=target)
|
|
if result == -1:
|
|
print(f"{target} was not found in {collection}.")
|
|
else:
|
|
print(f"{target} was found at position {result} of {collection}.")
|