Python/graphs/directed_and_undirected_weighted_graph.py
2024-10-28 15:32:59 +05:30

325 lines
8.7 KiB
Python

"""
Author : Yashwanth Adimulam
Date : 26th Oct 2024
Implement the class of Graphs with useful functions based on it.
Useful Links: https://www.geeksforgeeks.org/applications-advantages-and-disadvantages-of-weighted-graph/
https://www.tutorialspoint.com/applications-advantages-and-disadvantages-of-unweighted-graph
https://www.baeldung.com/cs/weighted-vs-unweighted-graphs
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
"""
from collections import deque
from math import floor
from random import random
from time import time
class DirectedGraph:
def __init__(self):
self.graph = {}
def add_pair(self, u, v, w=1):
"""
Add a directed edge from u to v with weight w.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2, 3)
>>> g.graph
{1: [[3, 2]], 2: []}
"""
if self.graph.get(u):
if self.graph[u].count([w, v]) == 0:
self.graph[u].append([w, v])
else:
self.graph[u] = [[w, v]]
if not self.graph.get(v):
self.graph[v] = []
def all_nodes(self):
"""
Return a list of all nodes in the graph.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.all_nodes()
[1, 2]
"""
return list(self.graph)
def remove_pair(self, u, v):
"""
Remove the directed edge from u to v.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.remove_pair(1, 2)
>>> g.graph
{1: [], 2: []}
"""
if self.graph.get(u):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_)
def dfs(self, s=-2, d=-1):
"""
Perform depth-first search from node s to d.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.add_pair(2, 3)
>>> g.dfs(1, 3)
[1, 2, 3]
>>> g.dfs(1, 2)
[1, 2]
"""
if s == d:
return []
stack = []
visited = []
if s == -2:
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
while True:
if len(self.graph[s]) != 0:
ss = s
for node in self.graph[s]:
if visited.count(node[1]) < 1:
if node[1] == d:
visited.append(d)
return visited
else:
stack.append(node[1])
visited.append(node[1])
ss = node[1]
break
if s == ss:
stack.pop()
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
if len(stack) == 0:
return visited
def fill_graph_randomly(self, c=-1):
"""
Fill the graph with random edges.
>>> g = DirectedGraph()
>>> g.fill_graph_randomly(5)
>>> len(g.all_nodes()) > 0
True
"""
if c == -1:
c = floor(random() * 10000) + 10
for i in range(c):
for _ in range(floor(random() * 102) + 1):
n = floor(random() * c) + 1
if n != i:
self.add_pair(i, n, 1)
def bfs(self, s=-2):
"""
Perform breadth-first search starting from node s.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.add_pair(2, 3)
>>> g.bfs(1)
[1, 2, 3]
"""
d = deque()
visited = []
if s == -2:
s = next(iter(self.graph))
d.append(s)
visited.append(s)
while d:
s = d.popleft()
if len(self.graph[s]) != 0:
for node in self.graph[s]:
if visited.count(node[1]) < 1:
d.append(node[1])
visited.append(node[1])
return visited
def in_degree(self, u):
"""
Calculate in-degree of node u.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.in_degree(2)
1
"""
count = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def out_degree(self, u):
"""
Calculate out-degree of node u.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.out_degree(1)
1
"""
return len(self.graph[u])
def topological_sort(self, s=-2):
"""
Perform topological sort of the graph.
"""
stack = []
visited = []
if s == -2:
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
sorted_nodes = []
while True:
if len(self.graph[s]) != 0:
ss = s
for node in self.graph[s]:
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
ss = node[1]
break
if s == ss:
sorted_nodes.append(stack.pop())
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
if len(stack) == 0:
return sorted_nodes
def cycle_nodes(self):
"""
Get nodes that are part of a cycle.
"""
stack = []
visited = []
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
anticipating_nodes = set()
while True:
if len(self.graph[s]) != 0:
ss = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
):
len_stack = len(stack) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1])
break
else:
anticipating_nodes.add(stack[len_stack])
len_stack -= 1
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
ss = node[1]
break
if s == ss:
stack.pop()
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
parent = s
s = ss
if len(stack) == 0:
return list(anticipating_nodes)
def has_cycle(self):
"""
Check if the graph has a cycle.
"""
stack = []
visited = []
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
indirect_parents = []
ss = s
while True:
if len(self.graph[s]) != 0:
ss = s
for node in self.graph[s]:
if (
visited.count(node[1]) > 0
and node[1] != parent
and indirect_parents.count(node[1]) > 0
):
return True
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
ss = node[1]
break
if s == ss:
stack.pop()
if len(stack) != 0:
s = stack[len(stack) - 1]
else:
s = ss
if len(stack) == 0:
return False
def dfs_time(self, s=-2, e=-1):
"""
Measure the time taken for DFS.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.dfs_time(1, 2) >= 0
True
"""
begin = time()
self.dfs(s, e)
end = time()
return end - begin
def bfs_time(self, s=-2):
"""
Measure the time taken for BFS.
>>> g = DirectedGraph()
>>> g.add_pair(1, 2)
>>> g.bfs_time(1) >= 0
True
"""
begin = time()
self.bfs(s)
end = time()
return end - begin