mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 09:10:16 +00:00
07e991d553
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038) * refactor: Fix naming conventions (#7038) * Update arithmetic_analysis/lu_decomposition.py Co-authored-by: Christian Clauss <cclauss@me.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038) * chore: Fix naming conventions in doctests (#7038) * fix: Temporarily disable project euler problem 104 (#7069) * chore: Fix naming conventions in doctests (#7038) Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
45 lines
1.0 KiB
Python
45 lines
1.0 KiB
Python
# Gaussian Naive Bayes Example
|
|
from matplotlib import pyplot as plt
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.metrics import plot_confusion_matrix
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.naive_bayes import GaussianNB
|
|
|
|
|
|
def main():
|
|
|
|
"""
|
|
Gaussian Naive Bayes Example using sklearn function.
|
|
Iris type dataset is used to demonstrate algorithm.
|
|
"""
|
|
|
|
# Load Iris dataset
|
|
iris = load_iris()
|
|
|
|
# Split dataset into train and test data
|
|
x = iris["data"] # features
|
|
y = iris["target"]
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
|
x, y, test_size=0.3, random_state=1
|
|
)
|
|
|
|
# Gaussian Naive Bayes
|
|
nb_model = GaussianNB()
|
|
nb_model.fit(x_train, y_train)
|
|
|
|
# Display Confusion Matrix
|
|
plot_confusion_matrix(
|
|
nb_model,
|
|
x_test,
|
|
y_test,
|
|
display_labels=iris["target_names"],
|
|
cmap="Blues",
|
|
normalize="true",
|
|
)
|
|
plt.title("Normalized Confusion Matrix - IRIS Dataset")
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|