Python/project_euler/problem_125/sol1.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

57 lines
1.5 KiB
Python

"""
Problem 125: https://projecteuler.net/problem=125
The palindromic number 595 is interesting because it can be written as the sum
of consecutive squares: 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2.
There are exactly eleven palindromes below one-thousand that can be written as
consecutive square sums, and the sum of these palindromes is 4164. Note that
1 = 0^2 + 1^2 has not been included as this problem is concerned with the
squares of positive integers.
Find the sum of all the numbers less than 10^8 that are both palindromic and can
be written as the sum of consecutive squares.
"""
def is_palindrome(n: int) -> bool:
"""
Check if an integer is palindromic.
>>> is_palindrome(12521)
True
>>> is_palindrome(12522)
False
>>> is_palindrome(12210)
False
"""
if n % 10 == 0:
return False
s = str(n)
return s == s[::-1]
def solution() -> int:
"""
Returns the sum of all numbers less than 1e8 that are both palindromic and
can be written as the sum of consecutive squares.
"""
LIMIT = 10**8 # noqa: N806
answer = set()
first_square = 1
sum_squares = 5
while sum_squares < LIMIT:
last_square = first_square + 1
while sum_squares < LIMIT:
if is_palindrome(sum_squares):
answer.add(sum_squares)
last_square += 1
sum_squares += last_square**2
first_square += 1
sum_squares = first_square**2 + (first_square + 1) ** 2
return sum(answer)
if __name__ == "__main__":
print(solution())