mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-03 18:01:09 +00:00
77 lines
2.5 KiB
Python
77 lines
2.5 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
class RidgeRegression:
|
|
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
|
|
self.alpha:float = alpha
|
|
self.regularization_param:float = regularization_param
|
|
self.num_iterations:int = num_iterations
|
|
self.theta:np.ndarray = None
|
|
|
|
|
|
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
mean = np.mean(X, axis=0)
|
|
std = np.std(X, axis=0)
|
|
|
|
# avoid division by zero for constant features (std = 0)
|
|
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
|
|
|
X_scaled = (X - mean) / std
|
|
return X_scaled, mean, std
|
|
|
|
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
|
X_scaled, mean, std = self.feature_scaling(X)
|
|
m, n = X_scaled.shape
|
|
self.theta = np.zeros(n) # initializing weights to zeros
|
|
|
|
for i in range(self.num_iterations):
|
|
predictions = X_scaled.dot(self.theta)
|
|
error = predictions - y
|
|
|
|
# computing gradient with L2 regularization
|
|
gradient = (
|
|
X_scaled.T.dot(error) + self.regularization_param * self.theta
|
|
) / m
|
|
self.theta -= self.alpha * gradient # updating weights
|
|
|
|
def predict(self, X:np.ndarray) -> np.ndarray:
|
|
X_scaled, _, _ = self.feature_scaling(X)
|
|
return X_scaled.dot(self.theta)
|
|
|
|
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
|
X_scaled, _, _ = self.feature_scaling(X)
|
|
m = len(y)
|
|
|
|
predictions = X_scaled.dot(self.theta)
|
|
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
|
self.regularization_param / (2 * m)
|
|
) * np.sum(self.theta**2)
|
|
return cost
|
|
|
|
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
|
|
return np.mean(np.abs(y_true - y_pred))
|
|
|
|
|
|
# Example usage
|
|
if __name__ == "__main__":
|
|
df = pd.read_csv("ADRvsRating.csv")
|
|
X = df[["Rating"]].values
|
|
y = df["ADR"].values
|
|
y = (y - np.mean(y)) / np.std(y)
|
|
|
|
# added bias term to the feature matrix
|
|
X = np.c_[np.ones(X.shape[0]), X]
|
|
|
|
# initialize and train the ridge regression model
|
|
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
|
model.fit(X, y)
|
|
|
|
# predictions
|
|
predictions = model.predict(X)
|
|
|
|
# results
|
|
print("Optimized Weights:", model.theta)
|
|
print("Cost:", model.compute_cost(X, y))
|
|
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|