Python/blockchain/modular_division.py
Jie Han c906ba82f3
refactor: move import pytest line of blockchain algs under "main" section. (#2012)
* change doctest line

import doctest is not relevant with algorithms. move it under main section.

* from doctest import testmod

* refactor: move doctest under "main" section

* Update diophantine_equation.py

* Update modular_division.py

Co-authored-by: Christian Clauss <cclauss@me.com>
2020-05-19 12:56:16 +02:00

151 lines
3.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Modular Division :
# An efficient algorithm for dividing b by a modulo n.
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
# 0≤x≤n1, and b/a=x(modn) (that is, b=ax(modn)).
# Theorem:
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1
# This find x = b*a^(-1) mod n
# Uses ExtendedEuclid to find the inverse of a
def modular_division(a, b, n):
"""
>>> modular_division(4,8,5)
2
>>> modular_division(3,8,5)
1
>>> modular_division(4, 11, 5)
4
"""
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x
# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b
# ------------------ Finding Modular division using invert_modulo -------------------
# This function used the above inversion of a to find x = (b*a^(-1))mod n
def modular_division2(a, b, n):
"""
>>> modular_division2(4,8,5)
2
>>> modular_division2(3,8,5)
1
>>> modular_division2(4, 11, 5)
4
"""
s = invert_modulo(a, n)
x = (b * s) % n
return x
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
** extended_gcd function is used when d = gcd(a,b) is required in output
"""
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y)
# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm
def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
if __name__ == "__main__":
from doctest import testmod
testmod(name="modular_division", verbose=True)
testmod(name="modular_division2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_gcd", verbose=True)
testmod(name="extended_euclid", verbose=True)
testmod(name="greatest_common_divisor", verbose=True)