Python/maths/tanh.py
Caeden Perelli-Harris 490e645ed3
Fix minor typing errors in maths/ (#8959)
* updating DIRECTORY.md

* types(maths): Fix pylance issues in maths

* reset(vsc): Reset settings changes

* Update maths/jaccard_similarity.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* revert(erosion_operation): Revert erosion_operation

* test(jaccard_similarity): Add doctest to test alternative_union

* types(newton_raphson): Add typehints to func bodies

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-08-15 14:27:41 -07:00

43 lines
1.1 KiB
Python

"""
This script demonstrates the implementation of the tangent hyperbolic
or tanh function.
The function takes a vector of K real numbers as input and
then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the
element of the vector mostly -1 between 1.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Activation_function
"""
import numpy as np
def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
"""
Implements the tanh function
Parameters:
vector: np.ndarray
Returns:
tanh (np.array): The input numpy array after applying tanh.
mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1
Examples:
>>> tangent_hyperbolic(np.array([1,5,6,-0.67]))
array([ 0.76159416, 0.9999092 , 0.99998771, -0.58497988])
>>> tangent_hyperbolic(np.array([8,10,2,-0.98,13]))
array([ 0.99999977, 1. , 0.96402758, -0.7530659 , 1. ])
"""
return (2 / (1 + np.exp(-2 * vector))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()