mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-19 13:09:48 +00:00
237 lines
7.2 KiB
Python
237 lines
7.2 KiB
Python
import os
|
|
import mysql.connector
|
|
import datetime
|
|
from dotenv import load_dotenv
|
|
from together import Together
|
|
from groq import Groq
|
|
|
|
load_dotenv()
|
|
|
|
# Database configuration
|
|
db_config = {
|
|
"user": os.environ.get("DB_USER"),
|
|
"password": os.environ.get("DB_PASSWORD"),
|
|
"host": os.environ.get("DB_HOST"),
|
|
"database": os.environ.get("DB_NAME"),
|
|
}
|
|
|
|
api_service = os.environ.get("API_SERVICE")
|
|
|
|
|
|
def create_tables() -> None:
|
|
"""
|
|
Create the ChatDB.Chat_history and ChatDB.Chat_data tables if they do not exist.
|
|
Also, create a trigger to update is_stream in Chat_data when Chat_history.is_stream is updated.
|
|
"""
|
|
try:
|
|
conn = mysql.connector.connect(**db_config)
|
|
cursor = conn.cursor()
|
|
|
|
cursor.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS ChatDB.Chat_history (
|
|
chat_id INT AUTO_INCREMENT PRIMARY KEY,
|
|
start_time DATETIME,
|
|
is_stream INT
|
|
)
|
|
"""
|
|
)
|
|
|
|
cursor.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS ChatDB.Chat_data (
|
|
id INT AUTO_INCREMENT PRIMARY KEY,
|
|
chat_id INT,
|
|
user TEXT,
|
|
assistant TEXT,
|
|
FOREIGN KEY (chat_id) REFERENCES ChatDB.Chat_history(chat_id)
|
|
)
|
|
"""
|
|
)
|
|
|
|
cursor.execute("DROP TRIGGER IF EXISTS update_is_stream;")
|
|
|
|
cursor.execute(
|
|
"""
|
|
CREATE TRIGGER update_is_stream
|
|
AFTER UPDATE ON ChatDB.Chat_history
|
|
FOR EACH ROW
|
|
BEGIN
|
|
UPDATE ChatDB.Chat_data
|
|
SET is_stream = NEW.is_stream
|
|
WHERE chat_id = NEW.chat_id;
|
|
END;
|
|
"""
|
|
)
|
|
|
|
conn.commit()
|
|
except mysql.connector.Error as err:
|
|
print(f"Error: {err}")
|
|
finally:
|
|
cursor.close()
|
|
conn.close()
|
|
print("Tables and trigger created successfully")
|
|
|
|
|
|
def insert_chat_history(start_time: datetime.datetime, is_stream: int) -> None:
|
|
"""
|
|
Insert a new row into the ChatDB.Chat_history table.
|
|
:param start_time: Timestamp of when the chat started
|
|
:param is_stream: Indicator of whether the conversation is ongoing, starting, or ending
|
|
"""
|
|
try:
|
|
conn = mysql.connector.connect(**db_config)
|
|
cursor = conn.cursor()
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO ChatDB.Chat_history (start_time, is_stream)
|
|
VALUES (%s, %s)
|
|
""",
|
|
(start_time, is_stream),
|
|
)
|
|
conn.commit()
|
|
except mysql.connector.Error as err:
|
|
print(f"Error: {err}")
|
|
finally:
|
|
cursor.close()
|
|
conn.close()
|
|
|
|
|
|
def get_latest_chat_id() -> int:
|
|
"""
|
|
Retrieve the latest chat_id from the ChatDB.Chat_history table.
|
|
:return: The latest chat_id or None if no chat_id exists.
|
|
"""
|
|
try:
|
|
conn = mysql.connector.connect(**db_config)
|
|
cursor = conn.cursor()
|
|
cursor.execute(
|
|
"""
|
|
SELECT chat_id FROM ChatDB.Chat_history
|
|
ORDER BY chat_id DESC LIMIT 1
|
|
"""
|
|
)
|
|
chat_id = cursor.fetchone()[0]
|
|
return chat_id if chat_id else None
|
|
except mysql.connector.Error as err:
|
|
print(f"Error: {err}")
|
|
return None
|
|
finally:
|
|
cursor.close()
|
|
conn.close()
|
|
|
|
|
|
def insert_chat_data(chat_id: int, user_message: str, assistant_message: str) -> None:
|
|
"""
|
|
Insert a new row into the ChatDB.Chat_data table.
|
|
:param chat_id: The ID of the chat session
|
|
:param user_message: The user's message
|
|
:param assistant_message: The assistant's message
|
|
"""
|
|
try:
|
|
conn = mysql.connector.connect(**db_config)
|
|
cursor = conn.cursor()
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO ChatDB.Chat_data (chat_id, user, assistant)
|
|
VALUES (%s, %s, %s)
|
|
""",
|
|
(chat_id, user_message, assistant_message),
|
|
)
|
|
conn.commit()
|
|
except mysql.connector.Error as err:
|
|
print(f"Error: {err}")
|
|
finally:
|
|
cursor.close()
|
|
conn.close()
|
|
|
|
|
|
def generate_llm_response(
|
|
conversation_history: list[dict], api_service: str = "Groq"
|
|
) -> str:
|
|
"""
|
|
Generate a response from the LLM based on the conversation history.
|
|
:param conversation_history: List of dictionaries representing the conversation so far
|
|
:param api_service: Choose between "Together" or "Groq" as the API service
|
|
:return: Assistant's response as a string
|
|
"""
|
|
bot_response = ""
|
|
if api_service == "Together":
|
|
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
|
|
response = client.chat.completions.create(
|
|
model="meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
|
messages=conversation_history,
|
|
max_tokens=512,
|
|
temperature=0.3,
|
|
top_p=0.7,
|
|
top_k=50,
|
|
repetition_penalty=1,
|
|
stop=["<|eot_id|>", "<|eom_id|>"],
|
|
stream=False,
|
|
)
|
|
bot_response = response.choices[0].message.content
|
|
else:
|
|
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
|
response = client.chat.completions.create(
|
|
model="llama3-8b-8192",
|
|
messages=conversation_history,
|
|
max_tokens=1024,
|
|
temperature=0.3,
|
|
top_p=0.7,
|
|
stop=["<|eot_id|>", "<|eom_id|>"],
|
|
stream=False,
|
|
)
|
|
bot_response = response.choices[0].message.content
|
|
|
|
return bot_response
|
|
|
|
|
|
def chat_session() -> None:
|
|
"""
|
|
Start a chatbot session, allowing the user to interact with the LLM.
|
|
Saves conversation history in the database and ends the session on "/stop" command.
|
|
"""
|
|
print("Welcome to the chatbot! Type '/stop' to end the conversation.")
|
|
|
|
conversation_history = []
|
|
start_time = datetime.datetime.now()
|
|
chat_id_pk = None
|
|
api_service = "Groq" # or "Together"
|
|
|
|
while True:
|
|
user_input = input("\nYou: ").strip()
|
|
conversation_history.append({"role": "user", "content": user_input})
|
|
|
|
if chat_id_pk is None:
|
|
if user_input.lower() == "/stop":
|
|
break
|
|
bot_response = generate_llm_response(conversation_history, api_service)
|
|
conversation_history.append({"role": "assistant", "content": bot_response})
|
|
|
|
is_stream = 1 # New conversation
|
|
insert_chat_history(start_time, is_stream)
|
|
chat_id_pk = get_latest_chat_id()
|
|
insert_chat_data(chat_id_pk, user_input, bot_response)
|
|
else:
|
|
if user_input.lower() == "/stop":
|
|
is_stream = 2 # End of conversation
|
|
current_time = datetime.datetime.now()
|
|
insert_chat_history(current_time, is_stream)
|
|
break
|
|
|
|
bot_response = generate_llm_response(conversation_history, api_service)
|
|
conversation_history.append({"role": "assistant", "content": bot_response})
|
|
|
|
is_stream = 0 # Continuation of conversation
|
|
current_time = datetime.datetime.now()
|
|
insert_chat_history(current_time, is_stream)
|
|
insert_chat_data(chat_id_pk, user_input, bot_response)
|
|
|
|
if len(conversation_history) > 1000:
|
|
conversation_history = conversation_history[-3:]
|
|
|
|
|
|
# Example of starting a chat session
|
|
create_tables()
|
|
chat_session()
|