Python/maths/fibonacci.py
Tianyi Zheng 84cca2119c
Rewrite maths/fibonacci.py (#5734)
* Rewrite parts of Vector and Matrix methods

* Refactor determinant method and add unit tests

Refactor determinant method to create separate minor and cofactor
methods.
Add respective unit tests for new methods.
Rename methods using snake case to follow Python naming conventions.

* Reorganize Vector and Matrix methods

* Update linear_algebra/README.md

Co-authored-by: John Law <johnlaw.po@gmail.com>

* Fix punctuation and wording

* Apply suggestions from code review

Co-authored-by: John Law <johnlaw.po@gmail.com>

* Deduplicate euclidean length method for Vector

* Add more unit tests for Euclidean length method

* Fix bug in unit test for euclidean_length

* Remove old comments for magnitude method

* Rewrite maths/fibonacci.py

* Rewrite timer and add unit tests

* Fix typos in fib_binet unit tests

* Fix typos in fib_binet unit tests

* Clean main method

Co-authored-by: John Law <johnlaw.po@gmail.com>
2021-11-01 18:06:35 +01:00

131 lines
3.4 KiB
Python

# fibonacci.py
"""
Calculates the Fibonacci sequence using iteration, recursion, and a simplified
form of Binet's formula
NOTE 1: the iterative and recursive functions are more accurate than the Binet's
formula function because the iterative function doesn't use floats
NOTE 2: the Binet's formula function is much more limited in the size of inputs
that it can handle due to the size limitations of Python floats
"""
from math import sqrt
from time import time
def time_func(func, *args, **kwargs):
"""
Times the execution of a function with parameters
"""
start = time()
output = func(*args, **kwargs)
end = time()
if int(end - start) > 0:
print(f"{func.__name__} runtime: {(end - start):0.4f} s")
else:
print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms")
return output
def fib_iterative(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using iteration
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
Exception: n is negative
"""
if n < 0:
raise Exception("n is negative")
if n == 0:
return [0]
fib = [0, 1]
for _ in range(n - 1):
fib.append(fib[-1] + fib[-2])
return fib
def fib_recursive(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using recursion
>>> fib_iterative(0)
[0]
>>> fib_iterative(1)
[0, 1]
>>> fib_iterative(5)
[0, 1, 1, 2, 3, 5]
>>> fib_iterative(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
...
Exception: n is negative
"""
def fib_recursive_term(i: int) -> int:
"""
Calculates the i-th (0-indexed) Fibonacci number using recursion
"""
if i < 0:
raise Exception("n is negative")
if i < 2:
return i
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
if n < 0:
raise Exception("n is negative")
return [fib_recursive_term(i) for i in range(n + 1)]
def fib_binet(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
of Binet's formula:
https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding
NOTE 1: this function diverges from fib_iterative at around n = 71, likely
due to compounding floating-point arithmetic errors
NOTE 2: this function doesn't accept n >= 1475 because it overflows
thereafter due to the size limitations of Python floats
>>> fib_binet(0)
[0]
>>> fib_binet(1)
[0, 1]
>>> fib_binet(5)
[0, 1, 1, 2, 3, 5]
>>> fib_binet(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_binet(-1)
Traceback (most recent call last):
...
Exception: n is negative
>>> fib_binet(1475)
Traceback (most recent call last):
...
Exception: n is too large
"""
if n < 0:
raise Exception("n is negative")
if n >= 1475:
raise Exception("n is too large")
sqrt_5 = sqrt(5)
phi = (1 + sqrt_5) / 2
return [round(phi ** i / sqrt_5) for i in range(n + 1)]
if __name__ == "__main__":
num = 20
time_func(fib_iterative, num)
time_func(fib_recursive, num)
time_func(fib_binet, num)