mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
93fb169627
* chore: Fix tests * chore: Fix failing ruff * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * chore: Fix ruff errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * chore: Fix ruff errors * chore: Fix ruff errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update cellular_automata/game_of_life.py Co-authored-by: Christian Clauss <cclauss@me.com> * chore: Update ruff version in pre-commit * chore: Fix ruff errors * Update edmonds_karp_multiple_source_and_sink.py * Update factorial.py * Update primelib.py * Update min_cost_string_conversion.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
194 lines
6.4 KiB
Python
194 lines
6.4 KiB
Python
class FlowNetwork:
|
|
def __init__(self, graph, sources, sinks):
|
|
self.source_index = None
|
|
self.sink_index = None
|
|
self.graph = graph
|
|
|
|
self._normalize_graph(sources, sinks)
|
|
self.vertices_count = len(graph)
|
|
self.maximum_flow_algorithm = None
|
|
|
|
# make only one source and one sink
|
|
def _normalize_graph(self, sources, sinks):
|
|
if sources is int:
|
|
sources = [sources]
|
|
if sinks is int:
|
|
sinks = [sinks]
|
|
|
|
if len(sources) == 0 or len(sinks) == 0:
|
|
return
|
|
|
|
self.source_index = sources[0]
|
|
self.sink_index = sinks[0]
|
|
|
|
# make fake vertex if there are more
|
|
# than one source or sink
|
|
if len(sources) > 1 or len(sinks) > 1:
|
|
max_input_flow = 0
|
|
for i in sources:
|
|
max_input_flow += sum(self.graph[i])
|
|
|
|
size = len(self.graph) + 1
|
|
for room in self.graph:
|
|
room.insert(0, 0)
|
|
self.graph.insert(0, [0] * size)
|
|
for i in sources:
|
|
self.graph[0][i + 1] = max_input_flow
|
|
self.source_index = 0
|
|
|
|
size = len(self.graph) + 1
|
|
for room in self.graph:
|
|
room.append(0)
|
|
self.graph.append([0] * size)
|
|
for i in sinks:
|
|
self.graph[i + 1][size - 1] = max_input_flow
|
|
self.sink_index = size - 1
|
|
|
|
def find_maximum_flow(self):
|
|
if self.maximum_flow_algorithm is None:
|
|
raise Exception("You need to set maximum flow algorithm before.")
|
|
if self.source_index is None or self.sink_index is None:
|
|
return 0
|
|
|
|
self.maximum_flow_algorithm.execute()
|
|
return self.maximum_flow_algorithm.getMaximumFlow()
|
|
|
|
def set_maximum_flow_algorithm(self, algorithm):
|
|
self.maximum_flow_algorithm = algorithm(self)
|
|
|
|
|
|
class FlowNetworkAlgorithmExecutor:
|
|
def __init__(self, flow_network):
|
|
self.flow_network = flow_network
|
|
self.verticies_count = flow_network.verticesCount
|
|
self.source_index = flow_network.sourceIndex
|
|
self.sink_index = flow_network.sinkIndex
|
|
# it's just a reference, so you shouldn't change
|
|
# it in your algorithms, use deep copy before doing that
|
|
self.graph = flow_network.graph
|
|
self.executed = False
|
|
|
|
def execute(self):
|
|
if not self.executed:
|
|
self._algorithm()
|
|
self.executed = True
|
|
|
|
# You should override it
|
|
def _algorithm(self):
|
|
pass
|
|
|
|
|
|
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
|
|
def __init__(self, flow_network):
|
|
super().__init__(flow_network)
|
|
# use this to save your result
|
|
self.maximum_flow = -1
|
|
|
|
def get_maximum_flow(self):
|
|
if not self.executed:
|
|
raise Exception("You should execute algorithm before using its result!")
|
|
|
|
return self.maximum_flow
|
|
|
|
|
|
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
|
|
def __init__(self, flow_network):
|
|
super().__init__(flow_network)
|
|
|
|
self.preflow = [[0] * self.verticies_count for i in range(self.verticies_count)]
|
|
|
|
self.heights = [0] * self.verticies_count
|
|
self.excesses = [0] * self.verticies_count
|
|
|
|
def _algorithm(self):
|
|
self.heights[self.source_index] = self.verticies_count
|
|
|
|
# push some substance to graph
|
|
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]):
|
|
self.preflow[self.source_index][nextvertex_index] += bandwidth
|
|
self.preflow[nextvertex_index][self.source_index] -= bandwidth
|
|
self.excesses[nextvertex_index] += bandwidth
|
|
|
|
# Relabel-to-front selection rule
|
|
vertices_list = [
|
|
i
|
|
for i in range(self.verticies_count)
|
|
if i not in {self.source_index, self.sink_index}
|
|
]
|
|
|
|
# move through list
|
|
i = 0
|
|
while i < len(vertices_list):
|
|
vertex_index = vertices_list[i]
|
|
previous_height = self.heights[vertex_index]
|
|
self.process_vertex(vertex_index)
|
|
if self.heights[vertex_index] > previous_height:
|
|
# if it was relabeled, swap elements
|
|
# and start from 0 index
|
|
vertices_list.insert(0, vertices_list.pop(i))
|
|
i = 0
|
|
else:
|
|
i += 1
|
|
|
|
self.maximum_flow = sum(self.preflow[self.source_index])
|
|
|
|
def process_vertex(self, vertex_index):
|
|
while self.excesses[vertex_index] > 0:
|
|
for neighbour_index in range(self.verticies_count):
|
|
# if it's neighbour and current vertex is higher
|
|
if (
|
|
self.graph[vertex_index][neighbour_index]
|
|
- self.preflow[vertex_index][neighbour_index]
|
|
> 0
|
|
and self.heights[vertex_index] > self.heights[neighbour_index]
|
|
):
|
|
self.push(vertex_index, neighbour_index)
|
|
|
|
self.relabel(vertex_index)
|
|
|
|
def push(self, from_index, to_index):
|
|
preflow_delta = min(
|
|
self.excesses[from_index],
|
|
self.graph[from_index][to_index] - self.preflow[from_index][to_index],
|
|
)
|
|
self.preflow[from_index][to_index] += preflow_delta
|
|
self.preflow[to_index][from_index] -= preflow_delta
|
|
self.excesses[from_index] -= preflow_delta
|
|
self.excesses[to_index] += preflow_delta
|
|
|
|
def relabel(self, vertex_index):
|
|
min_height = None
|
|
for to_index in range(self.verticies_count):
|
|
if (
|
|
self.graph[vertex_index][to_index]
|
|
- self.preflow[vertex_index][to_index]
|
|
> 0
|
|
) and (min_height is None or self.heights[to_index] < min_height):
|
|
min_height = self.heights[to_index]
|
|
|
|
if min_height is not None:
|
|
self.heights[vertex_index] = min_height + 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
entrances = [0]
|
|
exits = [3]
|
|
# graph = [
|
|
# [0, 0, 4, 6, 0, 0],
|
|
# [0, 0, 5, 2, 0, 0],
|
|
# [0, 0, 0, 0, 4, 4],
|
|
# [0, 0, 0, 0, 6, 6],
|
|
# [0, 0, 0, 0, 0, 0],
|
|
# [0, 0, 0, 0, 0, 0],
|
|
# ]
|
|
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
|
|
|
|
# prepare our network
|
|
flow_network = FlowNetwork(graph, entrances, exits)
|
|
# set algorithm
|
|
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
|
|
# and calculate
|
|
maximum_flow = flow_network.find_maximum_flow()
|
|
|
|
print(f"maximum flow is {maximum_flow}")
|