mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-23 18:53:43 +00:00
268 lines
12 KiB
Python
268 lines
12 KiB
Python
from binascii import hexlify
|
|
from hashlib import sha256
|
|
from os import urandom
|
|
|
|
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
|
|
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
|
|
|
|
primes = {
|
|
# 1536-bit
|
|
5: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
# 2048-bit
|
|
14: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
|
|
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
|
|
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
|
|
"15728E5A8AACAA68FFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
# 3072-bit
|
|
15: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
|
|
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
|
|
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
|
|
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
|
|
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
|
|
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
|
|
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
|
|
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
|
|
"43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
# 4096-bit
|
|
16: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
|
|
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
|
|
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
|
|
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
|
|
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
|
|
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
|
|
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
|
|
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
|
|
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
|
|
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
|
|
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
|
|
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
|
|
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
|
|
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
|
|
"FFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
# 6144-bit
|
|
17: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
|
|
"FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
|
|
"180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
|
|
"3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
|
|
"04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
|
|
"B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
|
|
"1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
|
|
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
|
|
"E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
|
|
"99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
|
|
"04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
|
|
"233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
|
|
"D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
|
|
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
|
|
"AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
|
|
"DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
|
|
"2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
|
|
"F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
|
|
"BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
|
|
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
|
|
"B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
|
|
"387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
|
|
"6DCC4024FFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
# 8192-bit
|
|
18: {
|
|
"prime": int(
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
|
|
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
|
|
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
|
|
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
|
|
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
|
|
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
|
|
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
|
|
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
|
|
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
|
|
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
|
|
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
|
|
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
|
|
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
|
|
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
|
|
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
|
|
"F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
|
|
"179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
|
|
"DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
|
|
"5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
|
|
"D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
|
|
"23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
|
|
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
|
|
"06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
|
|
"DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
|
|
"12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
|
|
"38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
|
|
"741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
|
|
"3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
|
|
"22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
|
|
"4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
|
|
"062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
|
|
"4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
|
|
"B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
|
|
"4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
|
|
"9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
|
|
"60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
|
|
base=16,
|
|
),
|
|
"generator": 2,
|
|
},
|
|
}
|
|
|
|
|
|
class DiffieHellman:
|
|
"""
|
|
Class to represent the Diffie-Hellman key exchange protocol
|
|
|
|
|
|
>>> alice = DiffieHellman()
|
|
>>> bob = DiffieHellman()
|
|
|
|
>>> alice_private = alice.get_private_key()
|
|
>>> alice_public = alice.generate_public_key()
|
|
|
|
>>> bob_private = bob.get_private_key()
|
|
>>> bob_public = bob.generate_public_key()
|
|
|
|
>>> # generating shared key using the DH object
|
|
>>> alice_shared = alice.generate_shared_key(bob_public)
|
|
>>> bob_shared = bob.generate_shared_key(alice_public)
|
|
|
|
>>> assert alice_shared == bob_shared
|
|
|
|
>>> # generating shared key using static methods
|
|
>>> alice_shared = DiffieHellman.generate_shared_key_static(
|
|
... alice_private, bob_public
|
|
... )
|
|
>>> bob_shared = DiffieHellman.generate_shared_key_static(
|
|
... bob_private, alice_public
|
|
... )
|
|
|
|
>>> assert alice_shared == bob_shared
|
|
"""
|
|
|
|
# Current minimum recommendation is 2048 bit (group 14)
|
|
def __init__(self, group: int = 14) -> None:
|
|
if group not in primes:
|
|
raise ValueError("Unsupported Group")
|
|
self.prime = primes[group]["prime"]
|
|
self.generator = primes[group]["generator"]
|
|
|
|
self.__private_key = int(hexlify(urandom(32)), base=16)
|
|
|
|
def get_private_key(self) -> str:
|
|
return hex(self.__private_key)[2:]
|
|
|
|
def generate_public_key(self) -> str:
|
|
public_key = pow(self.generator, self.__private_key, self.prime)
|
|
return hex(public_key)[2:]
|
|
|
|
def is_valid_public_key(self, key: int) -> bool:
|
|
# check if the other public key is valid based on NIST SP800-56
|
|
return (
|
|
2 <= key <= self.prime - 2
|
|
and pow(key, (self.prime - 1) // 2, self.prime) == 1
|
|
)
|
|
|
|
def generate_shared_key(self, other_key_str: str) -> str:
|
|
other_key = int(other_key_str, base=16)
|
|
if not self.is_valid_public_key(other_key):
|
|
raise ValueError("Invalid public key")
|
|
shared_key = pow(other_key, self.__private_key, self.prime)
|
|
return sha256(str(shared_key).encode()).hexdigest()
|
|
|
|
@staticmethod
|
|
def is_valid_public_key_static(remote_public_key_str: int, prime: int) -> bool:
|
|
# check if the other public key is valid based on NIST SP800-56
|
|
return (
|
|
2 <= remote_public_key_str <= prime - 2
|
|
and pow(remote_public_key_str, (prime - 1) // 2, prime) == 1
|
|
)
|
|
|
|
@staticmethod
|
|
def generate_shared_key_static(
|
|
local_private_key_str: str, remote_public_key_str: str, group: int = 14
|
|
) -> str:
|
|
local_private_key = int(local_private_key_str, base=16)
|
|
remote_public_key = int(remote_public_key_str, base=16)
|
|
prime = primes[group]["prime"]
|
|
if not DiffieHellman.is_valid_public_key_static(remote_public_key, prime):
|
|
raise ValueError("Invalid public key")
|
|
shared_key = pow(remote_public_key, local_private_key, prime)
|
|
return sha256(str(shared_key).encode()).hexdigest()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|