mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-23 18:53:43 +00:00
d016fda51c
* Enable ruff RUF003 rule * Update pyproject.toml --------- Co-authored-by: Christian Clauss <cclauss@me.com>
227 lines
8.0 KiB
Python
227 lines
8.0 KiB
Python
"""
|
|
Use an ant colony optimization algorithm to solve the travelling salesman problem (TSP)
|
|
which asks the following question:
|
|
"Given a list of cities and the distances between each pair of cities, what is the
|
|
shortest possible route that visits each city exactly once and returns to the origin
|
|
city?"
|
|
|
|
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
|
|
https://en.wikipedia.org/wiki/Travelling_salesman_problem
|
|
|
|
Author: Clark
|
|
"""
|
|
|
|
import copy
|
|
import random
|
|
|
|
cities = {
|
|
0: [0, 0],
|
|
1: [0, 5],
|
|
2: [3, 8],
|
|
3: [8, 10],
|
|
4: [12, 8],
|
|
5: [12, 4],
|
|
6: [8, 0],
|
|
7: [6, 2],
|
|
}
|
|
|
|
|
|
def main(
|
|
cities: dict[int, list[int]],
|
|
ants_num: int,
|
|
iterations_num: int,
|
|
pheromone_evaporation: float,
|
|
alpha: float,
|
|
beta: float,
|
|
q: float, # Pheromone system parameters Q, which is a constant
|
|
) -> tuple[list[int], float]:
|
|
"""
|
|
Ant colony algorithm main function
|
|
>>> main(cities=cities, ants_num=10, iterations_num=20,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
([0, 1, 2, 3, 4, 5, 6, 7, 0], 37.909778143828696)
|
|
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
([0, 1, 0], 5.656854249492381)
|
|
>>> main(cities={0: [0, 0], 1: [2, 2], 4: [4, 4]}, ants_num=5, iterations_num=5,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: list index out of range
|
|
>>> main(cities={}, ants_num=5, iterations_num=5,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
Traceback (most recent call last):
|
|
...
|
|
StopIteration
|
|
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=0, iterations_num=5,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
([], inf)
|
|
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=0,
|
|
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
|
([], inf)
|
|
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
|
... pheromone_evaporation=1, alpha=1.0, beta=5.0, q=10)
|
|
([0, 1, 0], 5.656854249492381)
|
|
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
|
... pheromone_evaporation=0, alpha=1.0, beta=5.0, q=10)
|
|
([0, 1, 0], 5.656854249492381)
|
|
"""
|
|
# Initialize the pheromone matrix
|
|
cities_num = len(cities)
|
|
pheromone = [[1.0] * cities_num] * cities_num
|
|
|
|
best_path: list[int] = []
|
|
best_distance = float("inf")
|
|
for _ in range(iterations_num):
|
|
ants_route = []
|
|
for _ in range(ants_num):
|
|
unvisited_cities = copy.deepcopy(cities)
|
|
current_city = {next(iter(cities.keys())): next(iter(cities.values()))}
|
|
del unvisited_cities[next(iter(current_city.keys()))]
|
|
ant_route = [next(iter(current_city.keys()))]
|
|
while unvisited_cities:
|
|
current_city, unvisited_cities = city_select(
|
|
pheromone, current_city, unvisited_cities, alpha, beta
|
|
)
|
|
ant_route.append(next(iter(current_city.keys())))
|
|
ant_route.append(0)
|
|
ants_route.append(ant_route)
|
|
|
|
pheromone, best_path, best_distance = pheromone_update(
|
|
pheromone,
|
|
cities,
|
|
pheromone_evaporation,
|
|
ants_route,
|
|
q,
|
|
best_path,
|
|
best_distance,
|
|
)
|
|
return best_path, best_distance
|
|
|
|
|
|
def distance(city1: list[int], city2: list[int]) -> float:
|
|
"""
|
|
Calculate the distance between two coordinate points
|
|
>>> distance([0, 0], [3, 4] )
|
|
5.0
|
|
>>> distance([0, 0], [-3, 4] )
|
|
5.0
|
|
>>> distance([0, 0], [-3, -4] )
|
|
5.0
|
|
"""
|
|
return (((city1[0] - city2[0]) ** 2) + ((city1[1] - city2[1]) ** 2)) ** 0.5
|
|
|
|
|
|
def pheromone_update(
|
|
pheromone: list[list[float]],
|
|
cities: dict[int, list[int]],
|
|
pheromone_evaporation: float,
|
|
ants_route: list[list[int]],
|
|
q: float, # Pheromone system parameters Q, which is a constant
|
|
best_path: list[int],
|
|
best_distance: float,
|
|
) -> tuple[list[list[float]], list[int], float]:
|
|
"""
|
|
Update pheromones on the route and update the best route
|
|
>>>
|
|
>>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]],
|
|
... cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7,
|
|
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
|
... best_distance=float("inf"))
|
|
([[0.7, 4.235533905932737], [4.235533905932737, 0.7]], [0, 1, 0], 5.656854249492381)
|
|
>>> pheromone_update(pheromone=[],
|
|
... cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7,
|
|
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
|
... best_distance=float("inf"))
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: list index out of range
|
|
>>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]],
|
|
... cities={}, pheromone_evaporation=0.7,
|
|
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
|
... best_distance=float("inf"))
|
|
Traceback (most recent call last):
|
|
...
|
|
KeyError: 0
|
|
"""
|
|
for a in range(len(cities)): # Update the volatilization of pheromone on all routes
|
|
for b in range(len(cities)):
|
|
pheromone[a][b] *= pheromone_evaporation
|
|
for ant_route in ants_route:
|
|
total_distance = 0.0
|
|
for i in range(len(ant_route) - 1): # Calculate total distance
|
|
total_distance += distance(cities[ant_route[i]], cities[ant_route[i + 1]])
|
|
delta_pheromone = q / total_distance
|
|
for i in range(len(ant_route) - 1): # Update pheromones
|
|
pheromone[ant_route[i]][ant_route[i + 1]] += delta_pheromone
|
|
pheromone[ant_route[i + 1]][ant_route[i]] = pheromone[ant_route[i]][
|
|
ant_route[i + 1]
|
|
]
|
|
|
|
if total_distance < best_distance:
|
|
best_path = ant_route
|
|
best_distance = total_distance
|
|
|
|
return pheromone, best_path, best_distance
|
|
|
|
|
|
def city_select(
|
|
pheromone: list[list[float]],
|
|
current_city: dict[int, list[int]],
|
|
unvisited_cities: dict[int, list[int]],
|
|
alpha: float,
|
|
beta: float,
|
|
) -> tuple[dict[int, list[int]], dict[int, list[int]]]:
|
|
"""
|
|
Choose the next city for ants
|
|
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]},
|
|
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
|
({1: [2, 2]}, {})
|
|
>>> city_select(pheromone=[], current_city={0: [0,0]},
|
|
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: list index out of range
|
|
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={},
|
|
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
|
Traceback (most recent call last):
|
|
...
|
|
StopIteration
|
|
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]},
|
|
... unvisited_cities={}, alpha=1.0, beta=5.0)
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: list index out of range
|
|
"""
|
|
probabilities = []
|
|
for city in unvisited_cities:
|
|
city_distance = distance(
|
|
unvisited_cities[city], next(iter(current_city.values()))
|
|
)
|
|
probability = (pheromone[city][next(iter(current_city.keys()))] ** alpha) * (
|
|
(1 / city_distance) ** beta
|
|
)
|
|
probabilities.append(probability)
|
|
|
|
chosen_city_i = random.choices(
|
|
list(unvisited_cities.keys()), weights=probabilities
|
|
)[0]
|
|
chosen_city = {chosen_city_i: unvisited_cities[chosen_city_i]}
|
|
del unvisited_cities[next(iter(chosen_city.keys()))]
|
|
return chosen_city, unvisited_cities
|
|
|
|
|
|
if __name__ == "__main__":
|
|
best_path, best_distance = main(
|
|
cities=cities,
|
|
ants_num=10,
|
|
iterations_num=20,
|
|
pheromone_evaporation=0.7,
|
|
alpha=1.0,
|
|
beta=5.0,
|
|
q=10,
|
|
)
|
|
|
|
print(f"{best_path = }")
|
|
print(f"{best_distance = }")
|